Suppr超能文献

基于机器学习的美国树种氮硫临界负荷的经验值及其不确定性。

Empirical nitrogen and sulfur critical loads of U.S. tree species and their uncertainties with machine learning.

机构信息

Sonoma Technology, 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, United States.

Sonoma Technology, 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, United States.

出版信息

Sci Total Environ. 2023 Jan 20;857(Pt 1):159252. doi: 10.1016/j.scitotenv.2022.159252. Epub 2022 Oct 8.

Abstract

Critical loads (CLs) of atmospheric deposition for nitrogen (N) and sulfur (S) are used to support decision making related to air regulation and land management. Frequently, CLs are calculated using empirical methods, and the certainty of the results depends on accurate representation of underlying ecological processes. Machine learning (ML) models perform well in empirical modeling of processes with non-linear characteristics and significant variable interactions. We used bootstrap ensemble ML methods to develop CL estimates and assess uncertainties of CLs for the growth and survival of 108 tree species in the conterminous United States. We trained ML models to predict tree growth and survival and characterize the relationship between deposition and tree species response. Using four statistical methods, we quantified the uncertainty of CLs in 95 % confidence intervals (CI). At the lower bound of the CL uncertainty estimate, 80 % or more of tree species have been impacted by nitrogen deposition exceeding a CL for tree survival over >50 % of the species range, while at the upper bound the percentage is much lower (<20 % of tree species impacted across >60 % of the species range). Our analysis shows that bootstrap ensemble ML can be effectively used to quantify critical loads and their uncertainties. The range of the uncertainty we calculated is sufficiently large to warrant consideration in management and regulatory decision making with respect to atmospheric deposition.

摘要

大气氮(N)和硫(S)沉积的临界负荷(CL)用于支持与空气监管和土地管理相关的决策。通常,CL 是使用经验方法计算的,结果的确定性取决于对潜在生态过程的准确表示。机器学习(ML)模型在具有非线性特征和显著变量相互作用的过程的经验建模中表现良好。我们使用自举集成 ML 方法来开发美国大陆 108 种树种生长和存活的 CL 估计值,并评估 CL 的不确定性。我们训练 ML 模型来预测树木生长和存活,并描述沉积与树种响应之间的关系。使用四种统计方法,我们在 95%置信区间(CI)中量化了 CL 的不确定性。在 CL 不确定性估计的下限,超过 50%的树种的生存受到超过 CL 的氮沉积的影响,而在上限,这个比例要低得多(超过 60%的树种分布范围内,受影响的树种不到 20%)。我们的分析表明,自举集成 ML 可有效地用于量化临界负荷及其不确定性。我们计算的不确定性范围足够大,需要在大气沉积的管理和监管决策中加以考虑。

相似文献

引用本文的文献

本文引用的文献

2
CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS.黑箱模型的因果解释
J Bus Econ Stat. 2019;2019. doi: 10.1080/07350015.2019.1624293. Epub 2019 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验