Suppr超能文献

表征树种的局部氮敏感性及介导因素的相关影响。

Characterizing localized nitrogen sensitivity of tree species and the associated influences of mediating factors.

作者信息

Coughlin Justin G, Chang Shih Ying, Craig Kenneth, Scarborough Charles, Driscoll Charles T, Clark Christopher M, Pavlovic Nathan R

机构信息

Sonoma Technology, Inc., Petaluma, California, USA.

Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA.

出版信息

Ecosphere. 2024 Jul 3;15(7):e4925. doi: 10.1002/ecs2.4925.

Abstract

Critical loads (CLs) are frequently used to quantify terrestrial ecosystem impacts from nitrogen (N) deposition using ecological responses such as the growth and mortality of tree species. Typically, CLs are reported as a single value, with uncertainty, for an indicator across a species' entire range. Mediating factors such as climate and soil conditions can influence species' sensitivity to N, but the magnitudes of these effects are rarely calculated explicitly. Here, we quantify the spatial variability and estimation error in N CLs for the growth and survival of 10 different tree species while accounting for key environmental factors that mediate species sensitivity to N (e.g., soil characteristics). We used a bootstrapped machine learning approach to determine the level of N deposition at which a 1% decrease occurs in growth rate or survival probability at forest plot locations across the United States. We found minimal differences (<5 kg N ha year) when comparing a single species' CLs across climatic regimes but found considerable variability in species' local N CLs (>8.5 kg N ha year) within these regimes. We also evaluated the most important factors for predicting tree growth rates and mortality and found that climate, competition, and air pollution generally have the greatest influence on growth rates and survival probability. Lastly, we developed a new probability of exceedance metric for each species and found high likelihoods of exceedance across large portions (46%) of some species' ranges. Our analysis demonstrates that machine learning approaches provide a unique capability to: (1) quantify mediating factor influences on N sensitivity of trees, (2) estimate the error in local N CL estimates, and (3) generate localized N CLs with probabilities of exceedance for tree species.

摘要

临界负荷(CLs)经常被用于通过诸如树种的生长和死亡率等生态响应来量化氮(N)沉降对陆地生态系统的影响。通常,临界负荷以一个带有不确定性的单一值来报告,针对一个物种整个分布范围的一个指标。诸如气候和土壤条件等调节因素会影响物种对氮的敏感性,但其影响程度很少被明确计算。在这里,我们在考虑介导物种对氮敏感性的关键环境因素(例如土壤特性)的情况下,量化了10种不同树种生长和存活所需氮临界负荷的空间变异性和估计误差。我们使用一种自助式机器学习方法来确定在美国各地森林地块位置处,生长速率或存活概率下降1%时的氮沉降水平。我们发现在比较单一物种在不同气候条件下的临界负荷时差异极小(<5千克氮/公顷·年),但在这些气候条件下物种的局部氮临界负荷存在相当大的变异性(>8.5千克氮/公顷·年)。我们还评估了预测树木生长速率和死亡率的最重要因素,发现气候、竞争和空气污染通常对生长速率和存活概率影响最大。最后,我们为每个物种开发了一种新的超标概率指标,并发现一些物种分布范围的很大一部分(46%)存在高超标可能性。我们的分析表明机器学习方法具有独特能力来:(1)量化调节因素对树木氮敏感性的影响,(2)估计局部氮临界负荷估计中的误差,以及(3)生成具有超标概率的树种局部氮临界负荷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad2/11694898/b30b4cc32aca/nihms-2017876-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验