Structure Formation, INM Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany.
Small. 2022 Nov;18(46):e2204621. doi: 10.1002/smll.202204621. Epub 2022 Oct 10.
Gravity can affect the agglomeration of nanoparticles by changing convection and sedimentation. The temperature-induced agglomeration of hexadecanethiol-capped gold nanoparticles in microgravity (µ g) is studied at the ZARM (Center of Applied Space Technology and Microgravity) drop tower and compared to their agglomeration on the ground (1 g). Nonpolar nanoparticles with a hydrodynamic diameter of 13 nm are dispersed in tetradecane, rapidly cooled from 70 to 10 °C to induce agglomeration, and observed by dynamic light scattering at a time resolution of 1 s. The mean hydrodynamic diameters of the agglomerates formed after 8 s in microgravity are 3 times (for low initial concentrations) to 5 times (at high initial concentrations) larger than on the ground. The observations are consistent with an agglomeration process that is closer to the reaction limit on thground and closer to the diffusion limit in microgravity.
重力可以通过改变对流和沉降来影响纳米颗粒的团聚。在 ZARM(应用空间技术和微重力中心)落塔中研究了在微重力(µg)下十六烷硫醇包覆的金纳米颗粒因温度诱导而团聚的情况,并与在地面(1g)上的团聚情况进行了比较。具有 13nm 水动力学直径的非极性纳米颗粒分散在十四烷中,从 70°C 快速冷却至 10°C 以诱导团聚,并在 1s 的时间分辨率下通过动态光散射进行观察。在微重力下 8s 后形成的团聚体的平均水动力学直径是在地面上的 3 倍(对于低初始浓度)到 5 倍(对于高初始浓度)。这些观察结果与在地面上更接近反应极限,而在微重力下更接近扩散极限的团聚过程一致。