Jiang Yuxuan, Ermolaev Maksim, Kipshidze Gela, Moon Seongphill, Ozerov Mykhaylo, Smirnov Dmitry, Jiang Zhigang, Suchalkin Sergey
School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
Nat Commun. 2022 Oct 10;13(1):5960. doi: 10.1038/s41467-022-33560-x.
Realizing a large Landé g-factor of electrons in solid-state materials has long been thought of as a rewarding task as it can trigger abundant immediate applications in spintronics and quantum computing. Here, by using metamorphic InAsSb/InSb superlattices (SLs), we demonstrate an unprecedented high value of g ≈ 104, twice larger than that in bulk InSb, and fully spin-polarized states at low magnetic fields. In addition, we show that the g-factor can be tuned on demand from 20 to 110 via varying the SL period. The key ingredients of such a wide tunability are the wavefunction mixing and overlap between the electron and hole states, which have drawn little attention in prior studies. Our work not only establishes metamorphic InAsSb/InSb as a promising and competitive material platform for future quantum devices but also provides a new route toward g-factor engineering in semiconductor structures.
长期以来,人们一直认为在固态材料中实现电子的大朗德g因子是一项很有意义的任务,因为它可以在自旋电子学和量子计算中引发大量即时应用。在此,通过使用变质InAsSb/InSb超晶格(SLs),我们展示了前所未有的高g值≈104,比体相InSb中的值大两倍,并且在低磁场下具有完全自旋极化状态。此外,我们表明,通过改变超晶格周期,g因子可以在20到110之间按需调节。这种广泛可调性的关键因素是电子和空穴态之间的波函数混合和重叠,这在先前的研究中很少受到关注。我们的工作不仅确立了变质InAsSb/InSb作为未来量子器件的一个有前途且具有竞争力的材料平台,还为半导体结构中的g因子工程提供了一条新途径。