Suppr超能文献

欧洲长期的年度土壤氮盈余(1850-2019 年)。

Long-term annual soil nitrogen surplus across Europe (1850-2019).

机构信息

UFZ-Helmholtz Centre for Environmental Research, Department of Computational Hydrosystems, Leipzig, Germany.

Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany.

出版信息

Sci Data. 2022 Oct 10;9(1):612. doi: 10.1038/s41597-022-01693-9.

Abstract

Worldwide surface waters suffer from the presence of nitrogen (N) compounds causing eutrophication and deterioration of the water quality. Despite many Europe-wide legislation's, we still observe high N levels across many water bodies in Europe. Information on long-term annual soil N surplus is needed to better understand these N levels and inform future management strategies. Here, we reconstructed and analysed the annual long-term N surplus for both agricultural and non-agricultural soils across Europe at a 5 arcmin (≈10 km at the equator) spatial resolution for more than a century (1850-2019). The dataset consists of 16 N surplus estimates that account for the uncertainties resulting from input data sources and methodological choices in major components of the N surplus. We documented the consistency and plausibility of our estimates by comparing them with previous studies and discussed about possible avenues for further improvements. Importantly, our dataset offers the flexibility of aggregating the N surplus at any spatial scale of relevance to support water and land management strategies.

摘要

全球地表水受到氮(N)化合物的污染,导致富营养化和水质恶化。尽管欧洲有许多法规,但我们仍然观察到欧洲许多水体中存在高氮水平。需要了解有关长期年度土壤 N 盈余的信息,以便更好地了解这些 N 水平并为未来的管理策略提供信息。在这里,我们在 5 弧分(≈赤道上 10 公里)的空间分辨率上重建和分析了欧洲农业和非农业土壤的年度长期 N 盈余,时间跨度超过一个世纪(1850-2019 年)。该数据集由 16 个 N 盈余估计值组成,这些估计值考虑了输入数据源和 N 盈余主要组成部分中方法选择的不确定性。我们通过将这些估计值与以前的研究进行比较来证明我们的估计值的一致性和合理性,并讨论了进一步改进的可能途径。重要的是,我们的数据集提供了在任何相关空间尺度上汇总 N 盈余的灵活性,以支持水和土地管理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ca0/9551047/b710ddf1f298/41597_2022_1693_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验