Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000, Ghent, Belgium.
Packaging and Specialty Plastics R&D, Dow Benelux B.V., Terneuzen, 4530, AA, the Netherlands.
Anal Chim Acta. 2022 Oct 23;1231:340441. doi: 10.1016/j.aca.2022.340441. Epub 2022 Sep 27.
Refractive index detection (RID) is attractive because it allows approaching the benefits of universal detection with liquid chromatography, by which ideally standard independent calibration and hence compound independent quantification becomes possible. Nevertheless, the implementation of RID has remained limited as it offers poor detection sensitivity while only being compatible with isocratic mobile phases. The implementation of compositional solvent gradients has remained prohibitively challenging in commercial HPLC-RID systems due to the resulting drastic alterations in refractive index and extreme baseline drift. While the refractive index is also highly dependent on temperature, more leeway appears possible to mitigate the problem, particularly when the used temperature gradients can be limited. Temperature-responsive liquid chromatography (TRLC) allows obtaining isocratic reversed phase type of separations, whereby retention is modulated via temperature changes ∼ 15 °C-20 °C above and below the polymer conversion temperature. Elution profiles, reminiscent of what can be obtained with solvent gradients in conventional RPLC, can then be obtained by enacting downwards temperature gradients on the columns. This work comprises a proof-of-principle to illustrate the possibilities of combining thermal gradient TRLC with RID. The observed baseline drift appeared thereby very minor (<5 nRIU min), and hence easily controllable. Short chain fatty acids are used as representative compounds to assess this new approach. Overlapping calibration lines are accordingly obtained for all fatty acids between butyric and decanoic acid.
折射率检测(RID)很有吸引力,因为它可以通过液相色谱法实现通用检测的优势,从而理想地实现独立于标准的校准,进而实现独立于化合物的定量。然而,RID 的实施仍然受到限制,因为它的检测灵敏度较差,而且仅与等度流动相兼容。由于折射率的急剧变化和极端基线漂移,在商业 HPLC-RID 系统中实现组成溶剂梯度仍然具有挑战性。虽然折射率也高度依赖于温度,但似乎有更多的回旋余地可以缓解这个问题,特别是当使用的温度梯度可以受到限制时。温度响应型液相色谱(TRLC)允许获得等度反相类型的分离,其中保留通过温度变化来调节,温度变化在聚合物转化温度以上和以下约 15°C-20°C。然后可以通过在柱子上施加向下的温度梯度来获得类似于在常规 RPLC 中可以获得的洗脱曲线。这项工作包含了一个原理验证,以说明将热梯度 TRLC 与 RID 结合的可能性。观察到的基线漂移非常小(<5 nRIU min),因此很容易控制。短链脂肪酸被用作代表性化合物来评估这种新方法。因此,在丁酸和癸酸之间的所有脂肪酸都得到了重叠的校准线。