Suppr超能文献

通过机器学习算法对用于高效液相色谱的温度响应型聚合物柱保留机制进行物理化学建模。

Physicochemical modelling of the retention mechanism of temperature-responsive polymeric columns for HPLC through machine learning algorithms.

作者信息

Bandini Elena, Castellano Ontiveros Rodrigo, Kajtazi Ardiana, Eghbali Hamed, Lynen Frédéric

机构信息

Separation Science Group, Department of Organic and Macromolecular Chemistry, Univeristy of Ghent, Krijgslaan 281 S4bis, Ghent, 9000, Belgium.

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 11428, Sweden.

出版信息

J Cheminform. 2024 Jun 21;16(1):72. doi: 10.1186/s13321-024-00873-6.

Abstract

Temperature-responsive liquid chromatography (TRLC) offers a promising alternative to reversed-phase liquid chromatography (RPLC) for environmentally friendly analytical techniques by utilizing pure water as a mobile phase, eliminating the need for harmful organic solvents. TRLC columns, packed with temperature-responsive polymers coupled to silica particles, exhibit a unique retention mechanism influenced by temperature-induced polymer hydration. An investigation of the physicochemical parameters driving separation at high and low temperatures is crucial for better column manufacturing and selectivity control. Assessment of predictability using a dataset of 139 molecules analyzed at different temperatures elucidated the molecular descriptors (MDs) relevant to retention mechanisms. Linear regression, support vector regression (SVR), and tree-based ensemble models were evaluated, with no standout performer. The precision, accuracy, and robustness of models were validated through metrics, such as r and mean absolute error (MAE), and statistical analysis. At , logP predominantly influenced retention, akin to reversed-phase columns, while at , complex interactions with lipophilic and negative MDs, along with specific functional groups, dictated retention. These findings provide deeper insights into TRLC mechanisms, facilitating method development and maximizing column potential.

摘要

温度响应液相色谱法(TRLC)通过使用纯水作为流动相,为环境友好型分析技术提供了一种有前景的替代反相液相色谱法(RPLC)的方法,从而无需使用有害有机溶剂。填充有与硅胶颗粒偶联的温度响应聚合物的TRLC柱表现出受温度诱导的聚合物水合作用影响的独特保留机制。研究在高温和低温下驱动分离的物理化学参数对于更好地制造色谱柱和控制选择性至关重要。使用在不同温度下分析的139个分子的数据集评估预测性,阐明了与保留机制相关的分子描述符(MDs)。评估了线性回归、支持向量回归(SVR)和基于树的集成模型,但没有表现突出的模型。通过诸如r和平均绝对误差(MAE)等指标以及统计分析验证了模型的精密度、准确性和稳健性。在[具体温度1]时,logP主要影响保留,类似于反相柱,而在[具体温度2]时,与亲脂性和负MDs以及特定官能团的复杂相互作用决定了保留。这些发现为TRLC机制提供了更深入的见解,有助于方法开发并最大化色谱柱潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dba/11193285/bb43e07c1a7a/13321_2024_873_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验