Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, United States; Center for Nuclear Environmental Engineering and Science and Radioactive Waste Management, Clemson University, Anderson, SC 29625, United States.
Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, United States; Center for Nuclear Environmental Engineering and Science and Radioactive Waste Management, Clemson University, Anderson, SC 29625, United States.
Sci Total Environ. 2023 Jan 20;857(Pt 1):159320. doi: 10.1016/j.scitotenv.2022.159320. Epub 2022 Oct 8.
There remains a lack of knowledge regarding ecosystem transfer, transport processes, and mechanisms, which influence the long-term mobility of Pu-239 and Cs-137 in natural environments. Monitoring the distribution and migration of trace radioisotopes as ecosystem tracers has the potential to provide insight into the underlying mechanisms of geochemical cycles. This study investigated the distribution of anthropogenic radionuclides Pu-239 and Cs-137 along with total organic carbon, iron, and trace element in contaminated sediments of Pond B at the Savannah River Site (SRS). Pond B received reactor cooling water from 1961 to 1964, and trace amounts of Pu-239 and Cs-137 during operations. Our study collected sediment cores to determine concentrations of Pu-239, Cs-137, and major and minor elements in solid phase, pore water and an electrochemical method was used on wet cores to determine dissolved elemental concentrations. More than 50 years after deposition, Pu-239 and Cs-137 in sediments are primarily located in the upper 5 cm in area where deposition of particulate-bound contaminants was prevalent and located between 5 and 10 cm in areas of high sedimentation, showing a limited migration of Pu-239 and Cs-137. A Factor analysis demonstrated different sediment facies across the pond resulting in a range of geochemical processes controlling accumulation of Pu and Cs. Highest concentrations appear to be controlled by particulate input from the influent canal, dominated by clay, silt, and sand minerals bearing Fe. Elevated Pu-239 in the sediments were observed in areas with high organic matter and higher deposition rate relative to the Pond B system near the outlet indicating strong association of Pu with OM and particulates. Therefore, organic matter cycling likely plays a role in Pu redistribution between sediment and overlying pond water, and deposition in organic rich sediments accumulating near the outlet. Though Pu appears to have been distributed throughout the pond, Cs-137 concentrations remained the highest near the influent canal.
关于生态系统转移、传输过程和机制的知识仍然缺乏,这些过程和机制影响 Pu-239 和 Cs-137 在自然环境中的长期流动性。作为生态系统示踪剂监测痕量放射性同位素的分布和迁移,有可能深入了解地球化学循环的潜在机制。本研究调查了萨凡纳河现场(SRS) Pond B 污染沉积物中人为放射性核素 Pu-239 和 Cs-137 以及总有机碳、铁和微量元素的分布。Pond B 从 1961 年到 1964 年接收了反应堆冷却水,在运行过程中还接收了痕量的 Pu-239 和 Cs-137。我们的研究采集了沉积物岩芯,以确定固相、孔隙水和电化学方法中 Pu-239、Cs-137 和主要和次要元素的浓度,该方法用于测定湿岩芯中溶解元素的浓度。在沉积 50 多年后,沉积物中的 Pu-239 和 Cs-137 主要位于沉积颗粒状污染物的上 5 厘米处,在高沉积区位于 5 至 10 厘米处,表明 Pu-239 和 Cs-137 的迁移有限。因子分析表明池塘中存在不同的沉积物相,导致一系列控制 Pu 和 Cs 积累的地球化学过程。最高浓度似乎受来自进水渠的颗粒状输入控制,进水渠中富含 Fe 的粘土、粉砂和砂矿物质为主。在沉积物中观察到 Pu-239 浓度升高的区域,其有机物质含量高,相对于池塘出口附近的 Pond B 系统的沉积速率高,表明 Pu 与有机物质和颗粒物质强烈关联。因此,有机物质循环可能在 Pu 在沉积物和上覆池塘水之间的再分配以及在靠近出口的富含有机物的沉积物中的沉积中发挥作用。尽管 Pu 似乎已分布在整个池塘中,但 Cs-137 浓度仍在进水渠附近最高。