Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, L-231, Livermore, CA, 94550, USA.
Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA.
Sci Rep. 2023 Jul 8;13(1):11046. doi: 10.1038/s41598-023-37276-w.
Unlike short-term laboratory experiments, studies at sites historically contaminated with radionuclides can provide insight into contaminant migration behavior at environmentally-relevant decadal timescales. One such site is Pond B, a seasonally stratified reservoir within Savannah River Site (SC, USA) has low levels (μBq L) of plutonium in the water column. Here, we evaluate the origin of plutonium using high-precision isotope measurements, investigate the impact of water column geochemistry on plutonium cycling during different stratification periods, and re-evaluate long-term mass balance of plutonium in the pond. New isotopic data confirm that reactor-derived plutonium overwhelms input from Northern Hemisphere fallout at this site. Two suggested mechanisms for observed plutonium cycling in the water column include: (1) reductive dissolution of sediment-derived Fe(III)-(oxyhydr)oxides during seasonal stratification and (2) plutonium stabilization complexed strongly to Fe(III)-particulate organic matter (POM) complexes. While plutonium may be mobilized to a limited extent by stratification and reductive dissolution, peak plutonium concentrations are in shallow waters and associated with Fe(III)-POM at the inception of stratification. This suggests that plutonium release from sediments during stratification is not the dominant mechanism driving plutonium cycling in the pond. Importantly, our analysis suggests that the majority is retained in shallow sediments and may become increasingly recalcitrant.
与短期实验室实验不同,在历史上受到放射性核素污染的地点进行的研究可以深入了解环境相关的几十年时间尺度上污染物的迁移行为。一个这样的地点是 Pond B,它是美国萨凡纳河场址(SC)季节性分层的水库,水中的钚含量较低(μBq/L)。在这里,我们使用高精度同位素测量来评估钚的来源,研究水化学对不同分层期钚循环的影响,并重新评估池塘中钚的长期质量平衡。新的同位素数据证实,该地点的反应堆衍生钚超过了北半球沉降物的输入。水柱状钚循环的两种假设机制包括:(1)季节性分层期间沉积物衍生的 Fe(III)-(oxyhydr)oxides 的还原溶解,和(2)与 Fe(III)-颗粒有机物质 (POM) 复合物强烈结合的钚稳定化。虽然钚可能在一定程度上通过分层和还原溶解而被迁移,但峰值钚浓度出现在浅层水域,并与分层开始时的 Fe(III)-POM 相关。这表明分层过程中沉积物中钚的释放不是驱动池塘中钚循环的主要机制。重要的是,我们的分析表明,大部分钚被保留在浅层沉积物中,并且可能变得越来越难以降解。