移植的人类皮质类器官的成熟和回路整合。
Maturation and circuit integration of transplanted human cortical organoids.
机构信息
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA.
出版信息
Nature. 2022 Oct;610(7931):319-326. doi: 10.1038/s41586-022-05277-w. Epub 2022 Oct 12.
Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.
自组织神经类器官代表了一种很有前途的体外平台,可以用于模拟人类发育和疾病。然而,类器官缺乏体内存在的连接性,这限制了它们的成熟,并使它们与控制行为的其他回路无法整合。在这里,我们展示了从人类干细胞中衍生的皮质类器官移植到新生无胸腺大鼠的体感皮层后,会发育出成熟的细胞类型,并整合到感觉和与动机相关的回路中。MRI 显示移植后的类器官在多个干细胞系和动物中生长,而单核体分析显示皮质发生的进展和活性依赖的转录程序的出现。事实上,移植的皮质神经元表现出比体外神经元更复杂的形态、突触和内在膜特性,这使得能够发现来自 Timothy 综合征患者的神经元的缺陷。解剖学和功能轨迹显示,移植的类器官接收丘脑皮质和皮质皮质的输入,体内神经活动的记录表明,这些输入可以在人类细胞中产生感觉反应。最后,皮质类器官在大鼠大脑中延伸轴突,其光遗传学激活可以驱动寻求奖励的行为。因此,移植的人类皮质神经元成熟并与控制行为的宿主回路相互作用。我们预计,这种方法将有助于检测患者来源的细胞中的回路水平表型,而这些表型在其他情况下无法被发现。