Fang Qiang, Xia Haiting, Song Qinghe, Zhang Meijuan, Guo Rongxin, Montresor Silvio, Picart Pascal
Opt Express. 2022 Jun 6;30(12):20666-20683. doi: 10.1364/OE.459213.
Speckle denoising can improve digital holographic interferometry phase measurements but may affect experimental accuracy. A deep-learning-based speckle denoising algorithm is developed using a conditional generative adversarial network. Two subnetworks, namely discriminator and generator networks, which refer to the U-Net and DenseNet layer structures are used to supervise network learning quality and denoising. Datasets obtained from speckle simulations are shown to provide improved noise feature extraction. The loss function is designed by considering the peak signal-to-noise ratio parameters to improve efficiency and accuracy. The proposed method thus shows better performance than other denoising algorithms for processing experimental strain data from digital holography.
散斑去噪可以改善数字全息干涉测量的相位测量,但可能会影响实验精度。基于条件生成对抗网络开发了一种基于深度学习的散斑去噪算法。使用两个子网络,即鉴别器和生成器网络,它们参考了U-Net和DenseNet层结构,用于监督网络学习质量和去噪。从散斑模拟中获得的数据集被证明可以提供更好的噪声特征提取。通过考虑峰值信噪比参数来设计损失函数,以提高效率和准确性。因此,所提出的方法在处理来自数字全息术的实验应变数据时表现出比其他去噪算法更好的性能。