Xiao Gongli, Lin Zhixiong, Yang Hongyan, Xu Yanping, Zhou Sitong, Li Haiou, Liu Xingpeng, Wangyang Peihua
Opt Express. 2022 Jun 20;30(13):23198-23207. doi: 10.1364/OE.461261.
Two-dimensional (2D) materials, which have attracted attention due to intriguing optical properties, form a promising building block in optical and photonic devices. This paper numerically investigates a tunable and anisotropic perfect absorber in a graphene-black phosphorus (BP) nanoblock array structure. The suggested structure exhibits polarization-dependent anisotropic absorption in the mid-infrared, with maximum absorption of 99.73% for x-polarization and 53.47% for y-polarization, as determined by finite-difference time-domain FDTD analysis. Moreover, geometrical parameters and graphene and BP doping amounts are possibly employed to tailor the absorption spectra of the structures. Hence, our results have the potential in the design of polarization-selective and tunable high-performance devices in the mid-infrared, such as polarizers, modulators, and photodetectors.
二维(2D)材料因其引人入胜的光学特性而备受关注,是光学和光子器件中一种很有前景的构建模块。本文对石墨烯-黑磷(BP)纳米块阵列结构中的可调谐各向异性完美吸收体进行了数值研究。通过有限时域差分(FDTD)分析确定,所提出的结构在中红外波段表现出偏振依赖的各向异性吸收,其中x偏振的最大吸收率为99.73%,y偏振的最大吸收率为53.47%。此外,几何参数以及石墨烯和BP的掺杂量可用于调整结构的吸收光谱。因此,我们的研究结果在设计中红外波段的偏振选择性和可调谐高性能器件(如偏振器、调制器和光电探测器)方面具有潜力。