Suppr超能文献

基于信息熵的蛋白质特异性 RNA 结合位点预测。

Protein-Specific Prediction of RNA-Binding Sites Based on Information Entropy.

机构信息

College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.

Product R&D and Testing Center, Shilin Xingdian Agricultural Products Development Co., Ltd., Kunming, Yunnan 652200, China.

出版信息

Comput Intell Neurosci. 2022 Oct 3;2022:8626628. doi: 10.1155/2022/8626628. eCollection 2022.

Abstract

Understanding the protein-RNA interaction mechanism can help us to further explore various biological processes. The experimental techniques still have some limitations, such as the high cost of economy and time. Predicting protein-RNA-binding sites by using computational methods is an excellent research tool. Here, we developed a universal method for predicting protein-specific RNA-binding sites, so one general model for a given protein was constructed on a fixed dataset by fusing the data of different experimental techniques. At the same time, information theory was employed to characterize the sequence conservation of RNA-binding segments. Conversation difference profiles between binding and nonbinding segments were constructed by information entropy (IE), which indicates a significant difference. Finally, the 19 proteins-specific models based on random forest (RF) were built based on IE encoding. The performance on the independent datasets demonstrates that our method can obtain competitive results when compared with the current best prediction model.

摘要

理解蛋白质-RNA 相互作用的机制可以帮助我们进一步探索各种生物过程。实验技术仍然存在一些限制,例如经济和时间成本高。使用计算方法预测蛋白质-RNA 结合位点是一种极好的研究工具。在这里,我们开发了一种通用的方法来预测蛋白质特异性 RNA 结合位点,因此通过融合不同实验技术的数据,为给定的蛋白质构建了一个通用模型。同时,信息论被用来描述 RNA 结合片段的序列保守性。通过信息熵(IE)构建了结合和非结合片段之间的转换差异分布,表明存在显著差异。最后,基于 IE 编码构建了 19 个基于随机森林(RF)的蛋白质特异性模型。在独立数据集上的性能表明,与当前最佳预测模型相比,我们的方法可以获得有竞争力的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37a8/9550406/e7d4f259e72d/CIN2022-8626628.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验