Campbell Stephen, Phillips Laurie J, Major Jonathan D, Hutter Oliver S, Voyce Ryan, Qu Yongtao, Beattie Neil S, Zoppi Guillaume, Barrioz Vincent
Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne, United Kingdom.
Department of Physics, University of Liverpool, Liverpool, United Kingdom.
Front Chem. 2022 Sep 26;10:954588. doi: 10.3389/fchem.2022.954588. eCollection 2022.
Simple compound antimony selenide (SbSe) is a promising emergent light absorber for photovoltaic applications benefiting from its outstanding photoelectric properties. Antimony selenide thin film solar cells however, are limited by low open circuit voltage due to carrier recombination at the metallic back contact interface. In this work, solar cell capacitance simulator (SCAPS) is used to interpret the effect of hole transport layers (HTL), i.e., transition metal oxides NiO and MoO thin films on SbSe device characteristics. This reveals the critical role of NiO and MoO in altering the energy band alignment and increasing device performance by the introduction of a high energy barrier to electrons at the rear absorber/metal interface. Close-space sublimation (CSS) and thermal evaporation (TE) techniques are applied to deposit SbSe layers in both substrate and superstrate thin film solar cells with NiO and MoO HTLs incorporated into the device structure. The effect of the HTLs on SbSe crystallinity and solar cell performance is comprehensively studied. In superstrate device configuration, CSS-based SbSe solar cells with NiO HTL showed average improvements in open circuit voltage, short circuit current density and power conversion efficiency of 12%, 41%, and 42%, respectively, over the standard devices. Similarly, using a NiO HTL in TE-based SbSe devices improved open circuit voltage, short circuit current density and power conversion efficiency by 39%, 68%, and 92%, respectively.
简单化合物锑硒(SbSe)因其出色的光电性能,是一种很有前景的新兴光伏吸光材料。然而,锑硒薄膜太阳能电池由于金属背接触界面处的载流子复合,开路电压较低。在这项工作中,利用太阳能电池电容模拟器(SCAPS)来解释空穴传输层(HTL),即过渡金属氧化物NiO和MoO薄膜对SbSe器件特性的影响。这揭示了NiO和MoO通过在背吸收体/金属界面处引入高能垒来改变能带排列和提高器件性能方面的关键作用。采用近距离升华(CSS)和热蒸发(TE)技术在包含NiO和MoO HTL的器件结构的衬底和覆层薄膜太阳能电池中沉积SbSe层。全面研究了HTL对SbSe结晶度和太阳能电池性能的影响。在覆层器件配置中,与标准器件相比,具有NiO HTL的基于CSS的SbSe太阳能电池的开路电压、短路电流密度和功率转换效率平均分别提高了12%、41%和42%。同样,在基于TE的SbSe器件中使用NiO HTL,开路电压、短路电流密度和功率转换效率分别提高了39%、68%和92%。