Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
J Phys Chem Lett. 2022 Oct 27;13(42):9809-9814. doi: 10.1021/acs.jpclett.2c02375. Epub 2022 Oct 13.
The cytoplasm is an environment crowded by macromolecules and filled with metabolites and ions. Recent experimental and computational studies have addressed how this environment affects protein stability, folding kinetics, and protein-protein and protein-nucleic acid interactions, though its impact on metabolites remains largely unknown. Here we show how a simulated cytoplasm affects the conformation of adenosine triphosphate (ATP), a key energy source and regulatory metabolite present at high concentrations in cells. Analysis of our all-atom model of a small volume of the cytoplasm when contrasted with ATP modeled in vitro or resolved with protein structures deposited in the Protein Data Bank reveals that ATP molecules bound to proteins in cell form specific pitched conformations that are not observed at significant concentrations in the other environments. We hypothesize that these interactions evolved to fulfill functional roles when ATP interacts with protein surfaces.
细胞质是一个大分子拥挤、代谢物和离子充斥的环境。最近的实验和计算研究已经解决了这个环境如何影响蛋白质稳定性、折叠动力学以及蛋白质-蛋白质和蛋白质-核酸相互作用的问题,尽管它对代谢物的影响在很大程度上仍是未知的。在这里,我们展示了模拟细胞质如何影响关键能量源和调节代谢物三磷酸腺苷 (ATP) 的构象,细胞中 ATP 浓度很高。我们对一小部分细胞质的全原子模型进行分析,与在体外建模的 ATP 或在蛋白质数据库中解析的蛋白质结构进行对比,结果表明,与细胞内蛋白质结合的 ATP 分子形成特定的螺旋构象,而在其他环境中,这种构象在显著浓度下是观察不到的。我们假设这些相互作用是在 ATP 与蛋白质表面相互作用时进化而来的,以发挥其功能作用。