Suppr超能文献

基于机器学习的老年急诊手术后死亡率预测的研究和验证:一项前瞻性观察研究。

Study and validation of an explainable machine learning-based mortality prediction following emergency surgery in the elderly: A prospective observational study.

机构信息

Emergency Surgery and Trauma, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome, Italy The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pontedera, PI, Italy IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy Surgery Center, Colorectal Surgery Unit - Fondazione Policlinico Campus Bio-Medico, University Hospital of University Campus Bio-Medico of Rome, Rome, Italy.

出版信息

Int J Surg. 2022 Nov;107:106954. doi: 10.1016/j.ijsu.2022.106954. Epub 2022 Oct 11.

Abstract

INTRODUCTION

The heterogeneity of procedures and the variety of comorbidities of the patients undergoing surgery in an emergency setting makes perioperative risk stratification, planning, and risk mitigation crucial. In this optic, Machine Learning has the capability of deriving data-driven predictions based on multivariate interactions of thousands of instances. Our aim was to cross-validate and test interpretable models for the prediction of post-operative mortality after any surgery in an emergency setting on elderly patients.

METHODS

This study is a secondary analysis derived from the FRAILESEL study, a multi-center (N = 29 emergency care units), nationwide, observational prospective study with data collected between 06-2017 and 06-2018 investigating perioperative outcomes of elderly patients (age≥65 years) undergoing emergency surgery. Demographic and clinical data, medical and surgical history, preoperative risk factors, frailty, biochemical blood examination, vital parameters, and operative details were collected and the primary outcome was set to the 30-day mortality.

RESULTS

Of the 2570 included patients (50.66% males, median age 77 [IQR = 13] years) 238 (9.26%) were in the non-survivors group. The best performing solution (MultiLayer Perceptron) resulted in a test accuracy of 94.9% (sensitivity = 92.0%, specificity = 95.2%). Model explanations showed how non-chronic cardiac-related comorbidities reduced activities of daily living, low consciousness levels, high creatinine and low saturation increase the risk of death following surgery.

CONCLUSIONS

In this prospective observational study, a robustly cross-validated model resulted in better predictive performance than existing tools and scores in literature. By using only preoperative features and by deriving patient-specific explanations, the model provides crucial information during shared decision-making processes required for risk mitigation procedures.

摘要

简介

在急诊环境下进行手术的患者的手术程序和合并症存在多样性,这使得围手术期风险分层、计划和风险缓解至关重要。在这种情况下,机器学习有能力根据数千个实例的多元交互作用得出数据驱动的预测。我们的目的是在老年患者的急诊环境下,对任何手术的术后死亡率进行交叉验证和测试可解释的模型。

方法

本研究是 FRAILESEL 研究的二次分析,这是一项多中心(N=29 个急诊护理单位)、全国性、前瞻性观察研究,数据收集于 2017 年 6 月至 2018 年 6 月,调查了老年患者(年龄≥65 岁)接受急诊手术的围手术期结果。收集了人口统计学和临床数据、医疗和手术史、术前危险因素、虚弱、生化血液检查、生命体征和手术细节,主要结局设定为 30 天死亡率。

结果

在 2570 名纳入患者中(50.66%为男性,中位年龄 77[IQR=13]岁),238 名(9.26%)患者为非幸存者组。表现最好的解决方案(多层感知器)的测试准确率为 94.9%(灵敏度=92.0%,特异性=95.2%)。模型解释表明,非慢性心脏相关合并症如何降低日常生活活动能力、低意识水平、高肌酐和低饱和度会增加手术后死亡的风险。

结论

在这项前瞻性观察研究中,一个经过稳健交叉验证的模型比现有工具和文献中的评分具有更好的预测性能。该模型仅使用术前特征,并得出患者特定的解释,为需要风险缓解措施的共享决策过程提供了关键信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验