Suppr超能文献

在转基因小鼠中过表达鼠朊蛋白会导致非传染性海绵状脑病。

Overexpression of mouse prion protein in transgenic mice causes a non-transmissible spongiform encephalopathy.

机构信息

MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK.

Division of Neuropathology, Queen Square Institute of Neurology, London, WC1N 3BG, UK.

出版信息

Sci Rep. 2022 Oct 13;12(1):17198. doi: 10.1038/s41598-022-21608-3.

Abstract

Transgenic mice over-expressing human PRNP or murine Prnp transgenes on a mouse prion protein knockout background have made key contributions to the understanding of human prion diseases and have provided the basis for many of the fundamental advances in prion biology, including the first report of synthetic mammalian prions. In this regard, the prion paradigm is increasingly guiding the exploration of seeded protein misfolding in the pathogenesis of other neurodegenerative diseases. Here we report that a well-established and widely used line of such mice (Tg20 or tga20), which overexpress wild-type mouse prion protein, exhibit spontaneous aggregation and accumulation of misfolded prion protein in a strongly age-dependent manner, which is accompanied by focal spongiosis and occasional neuronal loss. In some cases a clinical syndrome developed with phenotypic features that closely resemble those seen in prion disease. However, passage of brain homogenate from affected, aged mice failed to transmit this syndrome when inoculated intracerebrally into further recipient animals. We conclude that overexpression of the wild-type mouse prion protein can cause an age-dependent protein misfolding disorder or proteinopathy that is not associated with the production of an infectious agent but can produce a phenotype closely similar to authentic prion disease.

摘要

过表达人 PRNP 或鼠 Prnp 转基因的转基因小鼠在鼠朊病毒蛋白敲除背景下对理解人类朊病毒病做出了重要贡献,并为朊病毒生物学的许多基础进展提供了基础,包括合成哺乳动物朊病毒的首次报道。在这方面,朊病毒范式越来越多地指导着对其他神经退行性疾病发病机制中种子蛋白错误折叠的探索。在这里,我们报告说,这种经过充分验证且广泛使用的小鼠品系(Tg20 或 tga20),其过表达野生型鼠朊病毒蛋白,以强烈的年龄依赖性方式自发聚集和积累错误折叠的朊病毒蛋白,伴随局灶性海绵状变性和偶尔的神经元丢失。在某些情况下,一种临床综合征发展,其表型特征与朊病毒病非常相似。然而,将来自受影响的老年小鼠的脑匀浆脑内接种到进一步的受者动物中,未能传递这种综合征。我们得出的结论是,野生型鼠朊病毒蛋白的过表达可引起年龄依赖性的蛋白质错误折叠障碍或蛋白质病,与传染性因子的产生无关,但可产生与真正的朊病毒病非常相似的表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/671d/9562354/005f79ac7132/41598_2022_21608_Fig1_HTML.jpg

相似文献

2
PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions.
Acta Neuropathol. 2016 Oct;132(4):611-24. doi: 10.1007/s00401-016-1594-5. Epub 2016 Jul 4.
3
Recombinant Mammalian Prions: The "Correctly" Misfolded Prion Protein Conformers.
Viruses. 2022 Aug 31;14(9):1940. doi: 10.3390/v14091940.
4
Dissociation of prion protein amyloid seeding from transmission of a spongiform encephalopathy.
J Virol. 2013 Nov;87(22):12349-56. doi: 10.1128/JVI.00673-13. Epub 2013 Sep 11.
6
PrP P102L and Nearby Lysine Mutations Promote Spontaneous Formation of Transmissible Prions.
J Virol. 2017 Oct 13;91(21). doi: 10.1128/JVI.01276-17. Print 2017 Nov 1.
7
Accumulation of prion protein in the brain that is not associated with transmissible disease.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4712-7. doi: 10.1073/pnas.0609241104. Epub 2007 Mar 6.
8
Role of prion protein glycosylation in replication of human prions by protein misfolding cyclic amplification.
Lab Invest. 2019 Nov;99(11):1741-1748. doi: 10.1038/s41374-019-0282-1. Epub 2019 Jun 27.
9
Approach To Identify Key Amino Acids in Low Susceptibility of Rabbit Prion Protein to Misfolding.
J Virol. 2017 Nov 30;91(24). doi: 10.1128/JVI.01543-17. Print 2017 Dec 15.
10
Infectious prions and proteinopathies.
Prion. 2017 Jan 2;11(1):40-47. doi: 10.1080/19336896.2017.1283464.

引用本文的文献

1
Convergent generation of atypical prions in knockin mouse models of genetic prion disease.
J Clin Invest. 2024 Aug 1;134(15):e176344. doi: 10.1172/JCI176344.
2
Development of a sensitive real-time quaking-induced conversion (RT-QuIC) assay for application in prion-infected blood.
PLoS One. 2023 Nov 2;18(11):e0293845. doi: 10.1371/journal.pone.0293845. eCollection 2023.

本文引用的文献

1
Prion strains viewed through the lens of cryo-EM.
Cell Tissue Res. 2023 Apr;392(1):167-178. doi: 10.1007/s00441-022-03676-z. Epub 2022 Aug 27.
2
Structural biology of ex vivo mammalian prions.
J Biol Chem. 2022 Aug;298(8):102181. doi: 10.1016/j.jbc.2022.102181. Epub 2022 Jun 23.
4
Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS.
PLoS Biol. 2020 Jun 9;18(6):e3000725. doi: 10.1371/journal.pbio.3000725. eCollection 2020 Jun.
5
Recent Advances in Understanding Mammalian Prion Structure: A Mini Review.
Front Mol Neurosci. 2019 Jul 9;12:169. doi: 10.3389/fnmol.2019.00169. eCollection 2019.
6
Mammalian prions and their wider relevance in neurodegenerative diseases.
Nature. 2016 Nov 10;539(7628):217-226. doi: 10.1038/nature20415.
7
Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy.
Nature. 2015 Sep 10;525(7568):247-50. doi: 10.1038/nature15369.
9
Transmission Properties of Human PrP 102L Prions Challenge the Relevance of Mouse Models of GSS.
PLoS Pathog. 2015 Jul 2;11(7):e1004953. doi: 10.1371/journal.ppat.1004953. eCollection 2015 Jul.
10
A naturally occurring variant of the human prion protein completely prevents prion disease.
Nature. 2015 Jun 25;522(7557):478-81. doi: 10.1038/nature14510. Epub 2015 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验