Olkhov-Mitsel Ekaterina, Yu Yanhong, Lajkosz Katherine, Liu Stanley K, Vesprini Danny, Sherman Christopher G, Downes Michelle R
Division of Anatomic Pathology, Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
Cancers (Basel). 2022 Oct 7;14(19):4911. doi: 10.3390/cancers14194911.
Transcriptional profiling of muscle-invasive bladder cancer (MIBC) using RNA sequencing (RNA-seq) technology has demonstrated the existence of intrinsic basal and luminal molecular subtypes that vary in their prognosis and response to therapy. However, routine use of RNA-seq in a clinical setting is restricted by cost and technical difficulties. Herein, we provide a single-sample NanoString-based seven-gene (KRT5, KRT6C, SERPINB13, UPK1A, UPK2, UPK3A and KRT20) MIBC molecular classifier that assigns a luminal and basal molecular subtype. The classifier was developed in a series of 138 chemotherapy naïve MIBCs split into training (70%) and testing (30%) datasets. Further, we validated the previously published CK5/6 and GATA3 immunohistochemical classifier which showed high concordance of 96.9% with the NanoString-based gene expression classifier. Immunohistochemistry-based molecular subtypes significantly correlated with recurrence-free survival (RFS) and disease-specific survival (DSS) in univariable ( = 0.006 and = 0.011, respectively) and multivariate cox regression analysis for DSS ( = 0.032). Used sequentially, the immunohistochemical- and NanoString-based classifiers provide faster turnaround time, lower cost per sample and simpler data analysis for ease of clinical implementation in routine diagnostics.
使用RNA测序(RNA-seq)技术对肌肉浸润性膀胱癌(MIBC)进行转录谱分析,已证明存在内在的基底和腔面分子亚型,它们在预后和对治疗的反应方面存在差异。然而,RNA-seq在临床环境中的常规应用受到成本和技术困难的限制。在此,我们提供了一种基于单样本NanoString的七基因(KRT5、KRT6C、SERPINB13、UPK1A、UPK2、UPK3A和KRT20)MIBC分子分类器,可确定腔面和基底分子亚型。该分类器是在138例未经化疗的MIBC患者系列中开发的,分为训练(70%)和测试(30%)数据集。此外,我们验证了先前发表的CK5/6和GATA3免疫组织化学分类器,其与基于NanoString的基因表达分类器显示出96.9%的高度一致性。基于免疫组织化学的分子亚型在单变量(分别为=0.006和=0.011)和多变量Cox回归分析(用于疾病特异性生存(DSS),=0.032)中与无复发生存(RFS)和疾病特异性生存(DSS)显著相关。依次使用基于免疫组织化学和NanoString的分类器,可提供更快的周转时间、更低的每份样本成本以及更简单的数据分析,便于在常规诊断中进行临床应用。