Suppr超能文献

开发和验证一种用于膀胱癌的 NanoString BASE47 基因分类器。

Development and validation of a NanoString BASE47 bladder cancer gene classifier.

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

出版信息

PLoS One. 2020 Dec 17;15(12):e0243935. doi: 10.1371/journal.pone.0243935. eCollection 2020.

Abstract

BACKGROUND

Recent molecular characterization of urothelial cancer (UC) has suggested potential pathways in which to direct treatment, leading to a host of targeted therapies in development for UC. In parallel, gene expression profiling has demonstrated that high-grade UC is a heterogeneous disease. Prognostic basal-like and luminal-like subtypes have been identified and an accurate transcriptome BASE47 classifier has been developed. However, these phenotypes cannot be broadly investigated due to the lack of a clinically viable diagnostic assay. We sought to develop and evaluate a diagnostic classifier of UC subtype with the goal of accurate classification from clinically available specimens.

METHODS

Tumor samples from 52 patients with high-grade UC were profiled for BASE47 genes concurrently by RNAseq as well as NanoString. After design and technical validation of a BASE47 NanoString probeset, results from the RNAseq and NanoString were used to translate diagnostic criteria to the Nanostring platform. Evaluation of repeatability and accuracy was performed to derive a final Nanostring based classifier. Diagnostic classification resulting from the NanoString BASE47 classifier was validated on an independent dataset (n = 30). The training and validation datasets accurately classified 87% and 93% of samples, respectively.

RESULTS

Here we have derived a NanoString-platform BASE47 classifier that accurately predicts basal-like and luminal-like subtypes in high grade urothelial cancer. We have further validated our new NanoString BASE47 classifier on an independent dataset and confirmed high accuracy when compared with our original Transcriptome BASE47 classifier.

CONCLUSIONS

The NanoString BASE47 classifier provides a faster turnaround time, a lower cost per sample to process, and maintains the accuracy of the original subtype classifier for better clinical implementation.

摘要

背景

最近对尿路上皮癌(UC)的分子特征分析表明,存在潜在的治疗靶点,因此有许多针对 UC 的靶向治疗方法正在开发中。与此同时,基因表达谱分析表明,高级别 UC 是一种异质性疾病。已经确定了预后的基底样和管腔样亚型,并开发了一种准确的转录组 BASE47 分类器。然而,由于缺乏临床可行的诊断检测,这些表型无法广泛研究。我们试图开发和评估 UC 亚型的诊断分类器,目标是从临床可用标本中进行准确分类。

方法

对 52 例高级别 UC 患者的肿瘤样本进行 RNAseq 和 NanoString 同时进行 BASE47 基因分析。在设计和验证 BASE47 NanoString 探针集的技术后,将 RNAseq 和 NanoString 的结果用于将诊断标准转换为 NanoString 平台。通过重复和准确性评估来开发最终的基于 NanoString 的分类器。使用独立数据集(n=30)验证 NanoString BASE47 分类器的诊断分类。训练和验证数据集分别准确分类了 87%和 93%的样本。

结果

在这里,我们已经开发出一种基于 NanoString 平台的 BASE47 分类器,可以准确预测高级别尿路上皮癌中的基底样和管腔样亚型。我们还在一个独立的数据集上进一步验证了我们的新 NanoString BASE47 分类器,并与我们原始的转录组 BASE47 分类器相比,确认了其高度准确性。

结论

NanoString BASE47 分类器提供了更快的周转时间,每个样本的处理成本更低,并且保持了原始亚型分类器的准确性,更有利于临床实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed45/7745986/5dd08dd713f7/pone.0243935.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验