Suppr超能文献

老年人膝关节骨关节炎与跌倒恐惧的质心加速度模式分类。

Classification of Center of Mass Acceleration Patterns in Older People with Knee Osteoarthritis and Fear of Falling.

机构信息

Centro de Estudios del Movimiento Humano (CEMH), Escuela de Kinesiologia, Facultad de Salud y Odontologia, Universidad Diego Portales, Santiago 8370109, Chile.

Escuela de Kinesiologia, Facultad de Salud y Ciencias Sociales, Universidad de Las Americas, Santiago 7500975, Chile.

出版信息

Int J Environ Res Public Health. 2022 Oct 8;19(19):12890. doi: 10.3390/ijerph191912890.

Abstract

(1) Background: The preoccupation related to the fall, also called fear of falling (FOF) by some authors is of interest in the fields of geriatrics and gerontology because it is related to the risk of falling and subsequent morbidity of falling. This study seeks to classify the acceleration patterns of the center of mass during walking in subjects with mild and moderate knee osteoarthritis (KOA) for three levels of FOF (mild, moderate, and high). (2) Method: Center-of-mass acceleration patterns were recorded in all three planes of motion for a 30-meter walk test. A convolutional neural network (CNN) was implemented for the classification of acceleration signals based on the different levels of FOF (mild, moderate, and high) for two KOA conditions (mild and moderate). (3) Results: For the three levels of FOF to fall and regardless of the degree of KOA, a precision of 0.71 was obtained. For the classification considering the three levels of FOF and only for the mild KOA condition, a precision of 0.72 was obtained. For the classification considering the three levels of FOF and only the moderate KOA condition, a precision of 0.81 was obtained, the same as in the previous case, and finally for the classification for two levels of FOF, a high vs. moderate precision of 0.78 was obtained. For high vs. low, a precision of 0.77 was obtained, and for the moderate vs. low, a precision of 0.8 was obtained. Finally, when considering both KOA conditions, a 0.74 rating was obtained. (4) Conclusions: The classification model based on deep learning (CNN) allows for the adequate discrimination of the acceleration patterns of the moderate class above the low or high FOF.

摘要

(1) 背景:一些作者将与跌倒相关的关注点,也称为跌倒恐惧(FOF),在老年医学和老年学领域引起了关注,因为它与跌倒风险和随后的跌倒发病率有关。本研究旨在对轻度和中度膝骨关节炎(KOA)患者在三个 FOF(轻度、中度和高度)水平下行走时的质心加速度模式进行分类。(2)方法:在三个运动平面上记录了所有参与者的质心加速度模式,进行了 30 米步行测试。实施卷积神经网络(CNN)来对加速度信号进行分类,这些信号基于不同水平的 FOF(轻度、中度和高度),用于两种 KOA 情况(轻度和中度)。(3)结果:对于三个 FOF 水平(无论 KOA 程度如何),都获得了 0.71 的精度。对于仅考虑三个 FOF 水平且仅考虑轻度 KOA 情况的分类,获得了 0.72 的精度。对于仅考虑中度 KOA 情况且考虑三个 FOF 水平的分类,获得了 0.81 的精度,与前一种情况相同,最后对于两种 FOF 水平的分类,获得了 0.78 的高度与中度精度。对于高度与低度,获得了 0.77 的精度,对于中度与低度,获得了 0.8 的精度。最后,当考虑两种 KOA 情况时,获得了 0.74 的评级。(4)结论:基于深度学习(CNN)的分类模型允许对中度 FOF 以上的加速度模式进行充分的区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ae/9564608/78cac8afa620/ijerph-19-12890-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验