Suppr超能文献

多智能体系统的无模型自适应迭代学习二分包容控制

Model-Free Adaptive Iterative Learning Bipartite Containment Control for Multi-Agent Systems.

作者信息

Sang Shangyu, Zhang Ruikun, Lin Xue

机构信息

School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China.

出版信息

Sensors (Basel). 2022 Sep 20;22(19):7115. doi: 10.3390/s22197115.

Abstract

This paper studies the bipartite containment tracking problem for a class of nonlinear multi-agent systems (MASs), where the interactions among agents can be both cooperative or antagonistic. Firstly, by the dynamic linearization method, we propose a novel model-free adaptive iterative learning control (MFAILC) to solve the bipartite containment problem of MASs. The designed controller only relies on the input and output data of the agent without requiring the model information of MASs. Secondly, we give the convergence condition that the containment error asymptotically converges to zero. The result shows that the output states of all followers will converge to the convex hull formed by the output states of leaders and the symmetric output states of leaders. Finally, the simulation verifies the effectiveness of the proposed method.

摘要

本文研究了一类非线性多智能体系统(MASs)的二分包容跟踪问题,其中智能体之间的相互作用既可以是合作的,也可以是对抗的。首先,通过动态线性化方法,我们提出了一种新颖的无模型自适应迭代学习控制(MFAILC)来解决MASs的二分包容问题。所设计的控制器仅依赖于智能体的输入和输出数据,而不需要MASs的模型信息。其次,我们给出了包容误差渐近收敛到零的收敛条件。结果表明,所有跟随者的输出状态将收敛到由领导者的输出状态和领导者的对称输出状态所形成的凸包。最后,仿真验证了所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验