Suppr超能文献

用于柔性进给驱动精确控制的多变量迭代学习控制设计

Multivariable Iterative Learning Control Design for Precision Control of Flexible Feed Drives.

作者信息

Wang Yulin, Hsiao Tesheng

机构信息

Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China.

出版信息

Sensors (Basel). 2024 May 30;24(11):3536. doi: 10.3390/s24113536.

Abstract

Advancements in machining technology demand higher speeds and precision, necessitating improved control systems in equipment like CNC machine tools. Due to lead errors, structural vibrations, and thermal deformation, commercial CNC controllers commonly use rotary encoders in the motor side to close the position loop, aiming to prevent insufficient stability and premature wear and damage of components. This paper introduces a multivariable iterative learning control (MILC) method tailored for flexible feed drive systems, focusing on enhancing dynamic positioning accuracy. The MILC employs error data from both the motor and table sides, enhancing precision by injecting compensation commands into both the reference trajectory and control command through a norm-optimization process. This method effectively mitigates conflicts between feedback control (FBC) and traditional iterative learning control (ILC) in flexible structures, achieving smaller tracking errors in the table side. The performance and efficacy of the MILC system are experimentally validated on an industrial biaxial CNC machine tool, demonstrating its potential for precision control in modern machining equipment.

摘要

加工技术的进步要求更高的速度和精度,这就需要在数控机床等设备中改进控制系统。由于存在丝杠误差、结构振动和热变形,商用数控控制器通常在电机侧使用旋转编码器来闭合位置环,旨在防止部件稳定性不足以及过早磨损和损坏。本文介绍了一种针对柔性进给驱动系统量身定制的多变量迭代学习控制(MILC)方法,重点在于提高动态定位精度。MILC利用电机侧和工作台侧的误差数据,通过规范优化过程将补偿指令注入参考轨迹和控制指令中,从而提高精度。该方法有效缓解了柔性结构中反馈控制(FBC)与传统迭代学习控制(ILC)之间的冲突,在工作台侧实现了更小的跟踪误差。MILC系统的性能和功效在一台工业双轴数控机床上通过实验得到了验证,证明了其在现代加工设备中进行精确控制的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验