Elgam Avner, Peretz Yossi, Pinhasi Yosef
Faculty of Engineering, Ariel University, Ariel 40700, Israel.
Department of Computer Sciences, Lev Academic Center, Jerusalem College of Technology, Jerusalem 9372115, Israel.
Sensors (Basel). 2022 Sep 22;22(19):7182. doi: 10.3390/s22197182.
Various destructive weather and physical phenomena affect many parameters in the radio layer (i.e., affecting the wireless paths Over-The-Air (OTA)) of many outdoor-to-outdoor wireless systems. These destructive effects create polarization torsion and rotation of the signals propagating in space and cause the scattering of wireless spatial paths. The direct meaning is a significant degradation in system performance, especially in the Quality-of-Service (QoS). Under these challenging scenarios, intelligent utilization of advanced Multiple-Input-Multiple-Output (MIMO) techniques such as polarization-diversity and time-diversity at the transmitter, as well as at the receiver, and intelligent use of the Cross-Polarization-Isolation (XPI) mechanism, are essential. We prove that combining these techniques with the tuning of the XPI of the antennas creates optimal conditions in the wireless MIMO channels. This combination does not only improve the system's performance, but also turns the destructive physical phenomena in the spatial-domain, into an advantage. In this article, we focus on formulating a wireless communication MIMO model in millimeter-Wave (mmWave) channels under rain distortions. We demonstrate the optimal use of combining Orthogonal-Space-Time-Coding (OSTBC) and Maximal-Ratio-Receive-Combiner (MRRC) with cross-polarization diversity techniques, that utilize the tuning of the XPI. An analytical exact optimal solution is proposed, that allows the tuning of the leading parameters to achieve global optimal performance, in terms of channel-capacity and Bit-Error-Rate (BER). In addition, we propose a process of approximation of feedback-closed-loop-MIMO. The feedback is employed between the transmitter and the receiver, in the scenario of changes in the channel-response-matrix in-between successive symbol-times. The feedback was designed to acheive global-maximum channel-capacity, while preserving the channel-path orthogonality in order to minimize the BER.
各种破坏性天气和物理现象会影响许多室外到室外无线系统的无线电层中的多个参数(即影响无线空中(OTA)路径)。这些破坏效应会导致空间中传播信号的极化扭曲和旋转,并引起无线空间路径的散射。其直接后果是系统性能显著下降,尤其是服务质量(QoS)。在这些具有挑战性的场景下,在发射机以及接收机处智能利用先进的多输入多输出(MIMO)技术,如极化分集和时间分集,以及智能使用交叉极化隔离(XPI)机制至关重要。我们证明,将这些技术与天线XPI的调整相结合,可在无线MIMO信道中创造最佳条件。这种结合不仅能提高系统性能,还能将空间域中的破坏性物理现象转化为优势。在本文中,我们专注于在毫米波(mmWave)信道中受降雨失真影响的情况下制定无线通信MIMO模型。我们展示了将正交空时编码(OSTBC)和最大比接收合并器(MRRC)与利用XPI调整的交叉极化分集技术相结合的最佳用法。提出了一种解析精确最优解,该解允许调整主要参数以在信道容量和误码率(BER)方面实现全局最优性能。此外,我们提出了一种反馈闭环MIMO的近似过程。在连续符号时间之间信道响应矩阵发生变化的场景中,在发射机和接收机之间采用反馈。该反馈旨在实现全局最大信道容量,同时保持信道路径正交性以最小化BER。