Suppr超能文献

一种基于信息压缩的快速圆检测算法。

A Fast Circle Detection Algorithm Based on Information Compression.

作者信息

Ou Yun, Deng Honggui, Liu Yang, Zhang Zeyu, Ruan Xusheng, Xu Qiguo, Peng Chengzuo

机构信息

School of Physics and Electronics, Central South University, Lushan South Road, Changsha 410083, China.

出版信息

Sensors (Basel). 2022 Sep 25;22(19):7267. doi: 10.3390/s22197267.

Abstract

Circle detection is a fundamental problem in computer vision. However, conventional circle detection algorithms are usually time-consuming and sensitive to noise. In order to solve these shortcomings, we propose a fast circle detection algorithm based on information compression. First, we introduce the idea of information compression, which compresses the circular information on the image into a small number of points while removing some of the noise through sharpness estimation and orientation filtering. Then, the circle parameters stored in the information point are obtained by the average sampling algorithm with a time complexity of O(1) to obtain candidate circles. Finally, we set different constraints on the complete circle and the defective circle according to the sampling results and find the true circle from the candidate circles. The experimental results on the three datasets show that our method can compress the circular information in the image into 1% of the information points, and compared to RHT, RCD, Jiang, Wang and CACD, Precision, Recall, Time and F-measure are greatly improved.

摘要

圆检测是计算机视觉中的一个基本问题。然而,传统的圆检测算法通常耗时且对噪声敏感。为了解决这些缺点,我们提出了一种基于信息压缩的快速圆检测算法。首先,我们引入信息压缩的思想,通过锐度估计和方向滤波将图像上的圆形信息压缩为少量点,同时去除一些噪声。然后,通过时间复杂度为O(1)的平均采样算法从信息点中获取存储的圆参数以获得候选圆。最后,根据采样结果对完整圆和缺陷圆设置不同的约束,并从候选圆中找到真实圆。在三个数据集上的实验结果表明,我们的方法可以将图像中的圆形信息压缩到1%的信息点,并且与RHT、RCD、Jiang、Wang和CACD相比,精度、召回率、时间和F值都有很大提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c3/9572816/1b83f6a9c879/sensors-22-07267-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验