Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain.
Nanoscale Horiz. 2022 Nov 21;7(12):1427-1477. doi: 10.1039/d2nh00377e.
In the last few years, electron microscopy has experienced a new methodological paradigm aimed to fix the bottlenecks and overcome the challenges of its analytical workflow. Machine learning and artificial intelligence are answering this call providing powerful resources towards automation, exploration, and development. In this review, we evaluate the state-of-the-art of machine learning applied to electron microscopy (and obliquely, to materials and nano-sciences). We start from the traditional imaging techniques to reach the newest higher-dimensionality ones, also covering the recent advances in spectroscopy and tomography. Additionally, the present review provides a practical guide for microscopists, and in general for material scientists, but not necessarily advanced machine learning practitioners, to straightforwardly apply the offered set of tools to their own research. To conclude, we explore the state-of-the-art of other disciplines with a broader experience in applying artificial intelligence methods to their research (, high-energy physics, astronomy, Earth sciences, and even robotics, videogames, or marketing and finances), in order to narrow down the incoming future of electron microscopy, its challenges and outlook.
在过去的几年中,电子显微镜技术经历了一场新的方法学范式革命,旨在解决其分析工作流程的瓶颈问题并克服相关挑战。机器学习和人工智能正在响应这一号召,为自动化、探索和开发提供强大的资源。在这篇综述中,我们评估了应用于电子显微镜(以及间接地应用于材料和纳米科学)的机器学习的最新进展。我们从传统的成像技术开始,一直讨论到最新的高维技术,同时还涵盖了光谱学和断层摄影术方面的最新进展。此外,本综述还为显微镜使用者,以及一般的材料科学家(但不一定是高级机器学习从业者)提供了实用指南,以便他们能够直接将提供的工具套件应用于自己的研究中。最后,我们探索了其他学科的最新进展,这些学科在将人工智能方法应用于其研究方面有着更广泛的经验(如高能物理学、天文学、地球科学,甚至机器人技术、视频游戏或市场营销和金融),以便缩小电子显微镜的未来、其挑战和前景。