Suppr超能文献

一项关于甲型、乙型流感病毒M2以及中东呼吸综合征冠状病毒和严重急性呼吸综合征冠状病毒E跨膜肽二级结构的概念验证研究,该研究在模拟膜溶剂中使用折叠分子动力学模拟方法。

A proof-of-concept study of the secondary structure of influenza A, B M2 and MERS- and SARS-CoV E transmembrane peptides using folding molecular dynamics simulations in a membrane mimetic solvent.

作者信息

Kolocouris Antonios, Arkin Isaiah, Glykos Nicholas M

机构信息

Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Greece.

Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 91904, Israel.

出版信息

Phys Chem Chem Phys. 2022 Oct 27;24(41):25391-25402. doi: 10.1039/d2cp02881f.

Abstract

Here, we have carried out a proof-of-concept molecular dynamics (MD) simulation with adaptive tempering in a membrane mimetic environment to study the folding of single-pass membrane peptides. We tested the influenza A M2 viroporin, influenza B M2 viroporin, and protein E from coronaviruses MERS-Cov-2 and SARS-CoV-2 peptides with known experimental secondary structures in membrane bilayers. The two influenza-derived peptides are significantly different in the peptide sequence and secondary structure and more polar than the two coronavirus-derived peptides. Through a total of more than 50 μs of simulation time that could be accomplished in trifluoroethanol (TFE), as a membrane model, we characterized comparatively the folding behavior, helical stability, and helical propensity of these transmembrane peptides that match perfectly their experimental secondary structures, and we identified common motifs that reflect their quaternary organization and known (or not) biochemical function. We showed that BM2 is organized into two structurally distinct parts: a significantly more stable N-terminal half, and a fast-converting C-terminal half that continuously folds and unfolds between α-helical structures and non-canonical structures, which are mostly turns. In AM2, both the N-terminal half and C-terminal half are very flexible. In contrast, the two coronavirus-derived transmembrane peptides are much more stable and fast helix-formers when compared with the influenza ones. In particular, the SARS-derived peptide E appears to be the fastest and most stable helix-former of all the four viral peptides studied, with a helical structure that persists almost without disruption for the whole of its 10 μs simulation. By comparing the results with experimental observations, we benchmarked TFE in studying the conformation of membrane and hydrophobic peptides. This work provided accurate results suggesting a methodology to run long MD simulations and predict structural properties of biologically important membrane peptides.

摘要

在此,我们在模拟膜环境中通过自适应回火进行了概念验证分子动力学(MD)模拟,以研究单通道膜肽的折叠。我们测试了甲型流感病毒M2离子通道蛋白、乙型流感病毒M2离子通道蛋白,以及来自冠状病毒MERS-CoV-2和SARS-CoV-2的蛋白E肽段,这些肽段在膜双层中具有已知的实验二级结构。这两种源自流感病毒的肽段在肽序列和二级结构上有显著差异,且比两种源自冠状病毒的肽段极性更强。通过在作为膜模型的三氟乙醇(TFE)中总共超过50微秒的模拟时间,我们比较了这些跨膜肽的折叠行为、螺旋稳定性和螺旋倾向性,它们与实验二级结构完美匹配,并且我们确定了反映其四级结构和已知(或未知)生化功能的共同基序。我们表明,BM2被组织成两个结构不同的部分:一个明显更稳定的N端半部,以及一个快速转换的C端半部,它在α螺旋结构和大多为转角的非经典结构之间不断折叠和展开。在AM2中,N端半部和C端半部都非常灵活。相比之下,与流感病毒衍生的肽段相比,这两种源自冠状病毒的跨膜肽段更稳定且形成螺旋更快。特别是,在所有研究的四种病毒肽段中,源自SARS的肽段E似乎是形成螺旋最快且最稳定的,其螺旋结构在整个长达10微秒的模拟过程中几乎持续无破坏。通过将结果与实验观察进行比较,我们在研究膜肽和疏水肽的构象方面对TFE进行了基准测试。这项工作提供了准确的结果,表明了一种进行长时间MD模拟并预测生物学上重要的膜肽结构特性的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验