Opt Express. 2022 Aug 29;30(18):31701-31713. doi: 10.1364/OE.465653.
Motion detection and direction recognition are two important fundamental visual functions among the many cognitive functions performed by the human visual system. The retina and visual cortex are indispensable for composing the visual nervous system. The retina is responsible for transmitting electrical signals converted from light signals to the visual cortex of the brain. We propose a photonic spiking neural network (SNN) based on vertical-cavity surface-emitting lasers with an embedding saturable absorber (VCSELs-SA) with temporal integration effects, and demonstrate that the motion detection and direction recognition tasks can be solved by mimicking the visual nervous system. Simulation results reveal that the proposed photonic SNN with a modified supervised algorithm combining the tempotron and the STDP rule can correctly detect the motion and recognize the direction angles, and is robust to time jitter and the current difference between VCSEL-SAs. The proposed approach adopts a low-power photonic neuromorphic system for real-time information processing, which provides theoretical support for the large-scale application of hardware photonic SNN in the future.
运动检测和方向识别是人类视觉系统执行的众多认知功能中的两个重要基本视觉功能。视网膜和视觉皮层是构成视觉神经系统不可或缺的部分。视网膜负责将光信号转换后的电信号传输到大脑的视觉皮层。我们提出了一种基于具有时间积分效应的嵌入可饱和吸收体的垂直腔面发射激光器的光子尖峰神经网络 (SNN),并证明通过模拟视觉神经系统可以解决运动检测和方向识别任务。仿真结果表明,所提出的具有 tempotron 和 STDP 规则的改进监督算法的光子 SNN 可以正确检测运动并识别方向角度,并且对时间抖动和 VCSEL-SA 之间的电流差异具有鲁棒性。所提出的方法采用低功耗的光子神经形态系统进行实时信息处理,为未来硬件光子 SNN 的大规模应用提供了理论支持。