SUPA Department of Physics, Institute of Photonics, TIC Centre, University of Strathclyde, 99 George St., Glasgow, G1 1RD, UK.
Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George St., Glasgow, G1 1XW, UK.
Sci Rep. 2022 Mar 22;12(1):4874. doi: 10.1038/s41598-022-08703-1.
The ever-increasing demand for artificial intelligence (AI) systems is underlining a significant requirement for new, AI-optimised hardware. Neuromorphic (brain-like) processors are one highly-promising solution, with photonic-enabled realizations receiving increasing attention. Among these, approaches based upon vertical cavity surface emitting lasers (VCSELs) are attracting interest given their favourable attributes and mature technology. Here, we demonstrate a hardware-friendly neuromorphic photonic spike processor, using a single VCSEL, for all-optical image edge-feature detection. This exploits the ability of a VCSEL-based photonic neuron to integrate temporally-encoded pixel data at high speed; and fire fast (100 ps-long) optical spikes upon detecting desired image features. Furthermore, the photonic system is combined with a software-implemented spiking neural network yielding a full platform for complex image classification tasks. This work therefore highlights the potential of VCSEL-based platforms for novel, ultrafast, all-optical neuromorphic processors interfacing with current computation and communication systems for use in future light-enabled AI and computer vision functionalities.
对人工智能 (AI) 系统的需求不断增长,这凸显了对新的、针对 AI 优化的硬件的重大需求。神经形态(类脑)处理器是一个极具前景的解决方案,其中基于光子学的实现方案受到越来越多的关注。在这些方案中,基于垂直腔面发射激光器 (VCSEL) 的方法因其有利的属性和成熟的技术而引起了人们的兴趣。在这里,我们展示了一种使用单个 VCSEL 的硬件友好型神经形态光子尖峰处理器,用于全光图像边缘特征检测。这利用了基于 VCSEL 的光子神经元以高速集成时间编码像素数据的能力;并且在检测到所需的图像特征时快速发射(100 ps 长)光学尖峰。此外,该光子系统与软件实现的尖峰神经网络相结合,为复杂的图像分类任务提供了一个完整的平台。因此,这项工作突出了基于 VCSEL 的平台在与当前计算和通信系统接口的新型超高速全光神经形态处理器方面的潜力,用于未来基于光的人工智能和计算机视觉功能。