Wei Lai, Xu Xin, Jiang Sen, Xi Kang, Zhang Linghao, Lan Yuelang, Yin Junying, Wu Haihua, Gao Yunfang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center for Industrial Wastewater Treatment and Reuse of Shandong Province, Binzhou Key Laboratory of Applied Electrochemistry, College of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, China.
J Colloid Interface Sci. 2023 Jan 15;630(Pt A):232-241. doi: 10.1016/j.jcis.2022.09.142. Epub 2022 Oct 2.
The energy density of solid-state lithium batteries (SSLBs) has been primarily limited by the low ionic conductivity of solid electrolyte and poor interface compatibility between electrolyte and electrodes. Herein, a multifunctional composite solid polymer electrolyte (CSPE) based on polyethylene oxide (PEO) embedded with zeolitic imidazolate framework-8 deposited on carboxymethyl cellulose (ZIF@CMC) is reported. The ZIF@CMC interpenetrated in PEO matrix creates a continuous Li conductive network by combining Zn in ZIF with the unsaturated group in PEO to boost the Li transport through the PEO chain segment. On the other hand, Zn can bond with bis(trifluoromethane)sulfonimide (TFSI) anion, thus promoting the dissolution of lithium salt and releasing more lithium ions. This CSPE demonstrates brilliant electrochemical properties, including a high ionic conductivity of 1.8 × 10 S cm at room temperature and a wide electrochemical window of 5 V. The integrated LiFePO/CSPE/Li batteries using 20 wt.% ZIF-8@CMC show excellent reversible capacity of 145.6 mAh g with a capacity retention of 88.95 % after 200 cycles at a high current density of 0.5C. Our study proposed a novel and effective strategy to construct high-performance solid-state lithium batteries.
固态锂电池(SSLBs)的能量密度主要受限于固体电解质的低离子电导率以及电解质与电极之间较差的界面兼容性。在此,报道了一种基于聚环氧乙烷(PEO)的多功能复合固体聚合物电解质(CSPE),其中嵌入了沉积在羧甲基纤维素上的沸石咪唑酯骨架-8(ZIF@CMC)。ZIF@CMC在PEO基体中相互贯穿,通过将ZIF中的锌与PEO中的不饱和基团结合,形成了一个连续的锂导电网络,以促进锂通过PEO链段的传输。另一方面,锌可以与双(三氟甲烷)磺酰亚胺(TFSI)阴离子结合,从而促进锂盐的溶解并释放更多锂离子。这种CSPE表现出出色的电化学性能,包括室温下1.8×10 S cm的高离子电导率和5 V的宽电化学窗口。使用20 wt.% ZIF-8@CMC的集成LiFePO/CSPE/Li电池在0.5C的高电流密度下经过200次循环后,显示出145.6 mAh g的优异可逆容量,容量保持率为88.95%。我们的研究提出了一种新颖且有效的策略来构建高性能固态锂电池。