Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA.
Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA 16802, USA.
J Biomech. 2022 Nov;144:111334. doi: 10.1016/j.jbiomech.2022.111334. Epub 2022 Oct 3.
Derived from inverted pendulum dynamics, mediolateral Margin of Stability (MoS) is a mechanically-grounded measure of instantaneous frontal-plane stability. However, average MoS measures yield paradoxical results. Gait pathologies or perturbations often induce larger (supposedly "more stable") average MoS, despite clearly destabilizing factors. However, people do not walk "on average" - they walk (and sometimes lose balance) one step at a time. We assert the paradox arises because averaging MoS discards crucial step-to-step dynamics. We present a framework unifying the inverted pendulum with Goal-Equivalent Manifold (GEM) analyses. We identify in the pendulum's center-of-mass dynamics constant-MoS manifolds, including one candidate "stability GEM" signifying the goal to maintain some constant MoS. We used this framework to assess step-to-step MoS dynamics of humans walking in destabilizing environments. While goal-relevant deviations were readily corrected, people did not exploit equifinality by allowing deviations to persist along this GEM. Thus, maintaining a constant MoS is inconsistent with observed step-to-step fluctuations in center-of-mass states. Conversely, the extent to which participants regulated fluctuations in mediolateral foot placements strongly predicted their regulation of center-of-mass fluctuations. Thus, center-of-mass dynamics may arise indirectly as a consequence of regulating mediolateral foot placements. To help resolve the paradox caused by averaging MoS, we present a new statistic, Probability of Instability (PoI), used here to predict lateral instability likelihood. Participants exhibited increased PoI when destabilized (p = 9.45 × 10), despite exhibiting larger ("more stable") average MoS (p = 1.70 × 10). Thus, PoI correctly captured people's increased risk of losing lateral balance, whereas average MoS did not. PoI also helps explain why people's average MoS increased in destabilizing contexts.
从倒立摆动力学衍生而来,横向平衡边缘(MoS)是一种基于力学的即时额状面稳定性的测量方法。然而,平均 MoS 测量会产生矛盾的结果。步态病理或干扰通常会导致更大的(据称“更稳定”)平均 MoS,尽管存在明显的不稳定因素。然而,人们不是“平均”行走——他们一步一步地行走(有时会失去平衡)。我们断言这种矛盾的出现是因为平均 MoS 丢弃了关键的步步动态。我们提出了一个将倒立摆与目标等效流形(GEM)分析统一起来的框架。我们在摆的质心动力学中确定了常数-MoS 流形,包括一个候选的“稳定性 GEM”,表示维持一定常数 MoS 的目标。我们使用这个框架来评估人类在不稳定环境中行走时的步步 MoS 动力学。虽然目标相关的偏差很容易得到纠正,但人们并没有通过允许偏差沿着这个 GEM 持续存在来利用等价性。因此,保持一个常数的 MoS 与观察到的质心状态的步步波动不一致。相反,参与者调节横向足部位置波动的程度强烈预测了他们对质心波动的调节程度。因此,质心动力学可能是调节横向足部位置的间接结果。为了帮助解决由平均 MoS 引起的矛盾,我们提出了一种新的统计量,即不稳定性概率(PoI),这里用于预测横向不稳定性的可能性。当参与者受到干扰时,PoI 增加(p=9.45×10),尽管平均 MoS 更大(p=1.70×10)。因此,PoI 正确地捕捉到了人们失去横向平衡的风险增加,而平均 MoS 没有。PoI 还有助于解释为什么人们在不稳定的情况下平均 MoS 会增加。