Suppr超能文献

重新思考稳定裕度:纳入步步调节以解决悖论。

Rethinking margin of stability: Incorporating step-to-step regulation to resolve the paradox.

机构信息

Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA.

Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

J Biomech. 2022 Nov;144:111334. doi: 10.1016/j.jbiomech.2022.111334. Epub 2022 Oct 3.

Abstract

Derived from inverted pendulum dynamics, mediolateral Margin of Stability (MoS) is a mechanically-grounded measure of instantaneous frontal-plane stability. However, average MoS measures yield paradoxical results. Gait pathologies or perturbations often induce larger (supposedly "more stable") average MoS, despite clearly destabilizing factors. However, people do not walk "on average" - they walk (and sometimes lose balance) one step at a time. We assert the paradox arises because averaging MoS discards crucial step-to-step dynamics. We present a framework unifying the inverted pendulum with Goal-Equivalent Manifold (GEM) analyses. We identify in the pendulum's center-of-mass dynamics constant-MoS manifolds, including one candidate "stability GEM" signifying the goal to maintain some constant MoS. We used this framework to assess step-to-step MoS dynamics of humans walking in destabilizing environments. While goal-relevant deviations were readily corrected, people did not exploit equifinality by allowing deviations to persist along this GEM. Thus, maintaining a constant MoS is inconsistent with observed step-to-step fluctuations in center-of-mass states. Conversely, the extent to which participants regulated fluctuations in mediolateral foot placements strongly predicted their regulation of center-of-mass fluctuations. Thus, center-of-mass dynamics may arise indirectly as a consequence of regulating mediolateral foot placements. To help resolve the paradox caused by averaging MoS, we present a new statistic, Probability of Instability (PoI), used here to predict lateral instability likelihood. Participants exhibited increased PoI when destabilized (p = 9.45 × 10), despite exhibiting larger ("more stable") average MoS (p = 1.70 × 10). Thus, PoI correctly captured people's increased risk of losing lateral balance, whereas average MoS did not. PoI also helps explain why people's average MoS increased in destabilizing contexts.

摘要

从倒立摆动力学衍生而来,横向平衡边缘(MoS)是一种基于力学的即时额状面稳定性的测量方法。然而,平均 MoS 测量会产生矛盾的结果。步态病理或干扰通常会导致更大的(据称“更稳定”)平均 MoS,尽管存在明显的不稳定因素。然而,人们不是“平均”行走——他们一步一步地行走(有时会失去平衡)。我们断言这种矛盾的出现是因为平均 MoS 丢弃了关键的步步动态。我们提出了一个将倒立摆与目标等效流形(GEM)分析统一起来的框架。我们在摆的质心动力学中确定了常数-MoS 流形,包括一个候选的“稳定性 GEM”,表示维持一定常数 MoS 的目标。我们使用这个框架来评估人类在不稳定环境中行走时的步步 MoS 动力学。虽然目标相关的偏差很容易得到纠正,但人们并没有通过允许偏差沿着这个 GEM 持续存在来利用等价性。因此,保持一个常数的 MoS 与观察到的质心状态的步步波动不一致。相反,参与者调节横向足部位置波动的程度强烈预测了他们对质心波动的调节程度。因此,质心动力学可能是调节横向足部位置的间接结果。为了帮助解决由平均 MoS 引起的矛盾,我们提出了一种新的统计量,即不稳定性概率(PoI),这里用于预测横向不稳定性的可能性。当参与者受到干扰时,PoI 增加(p=9.45×10),尽管平均 MoS 更大(p=1.70×10)。因此,PoI 正确地捕捉到了人们失去横向平衡的风险增加,而平均 MoS 没有。PoI 还有助于解释为什么人们在不稳定的情况下平均 MoS 会增加。

相似文献

1
Rethinking margin of stability: Incorporating step-to-step regulation to resolve the paradox.
J Biomech. 2022 Nov;144:111334. doi: 10.1016/j.jbiomech.2022.111334. Epub 2022 Oct 3.
2
The influence of net ground reaction force orientation on mediolateral stability during walking.
Gait Posture. 2021 Oct;90:73-79. doi: 10.1016/j.gaitpost.2021.08.009. Epub 2021 Aug 14.
3
How older adults maintain lateral balance while walking on narrowing paths.
Gait Posture. 2024 Sep;113:32-39. doi: 10.1016/j.gaitpost.2024.05.028. Epub 2024 Jun 3.
4
Frontal plane balance during pre-planned and late-cued 90 degree turns while walking.
J Biomech. 2022 Aug;141:111206. doi: 10.1016/j.jbiomech.2022.111206. Epub 2022 Jun 20.
5
How healthy older adults regulate lateral foot placement while walking in laterally destabilizing environments.
J Biomech. 2020 May 7;104:109714. doi: 10.1016/j.jbiomech.2020.109714. Epub 2020 Feb 25.
8
How persons with transtibial amputation regulate lateral stepping while walking in laterally destabilizing environments.
Gait Posture. 2021 Jan;83:88-95. doi: 10.1016/j.gaitpost.2020.09.031. Epub 2020 Oct 5.
10
Maintaining sagittal plane balance compromises frontal plane balance during reactive stepping in people post-stroke.
Clin Biomech (Bristol). 2020 Dec;80:105135. doi: 10.1016/j.clinbiomech.2020.105135. Epub 2020 Jul 29.

引用本文的文献

1
Behavioural risk models explain locomotor and balance changes when walking at virtual heights.
J R Soc Interface. 2025 May;22(226):20240832. doi: 10.1098/rsif.2024.0832. Epub 2025 May 14.
2
Temporal Evolution of Frontal Plane Center-of-Mass Transfer Asymmetry in Post-Stroke Gait.
IEEE Trans Neural Syst Rehabil Eng. 2025;33:1427-1438. doi: 10.1109/TNSRE.2025.3559857. Epub 2025 Apr 18.
3
Humans exploit the trade-off between lateral stability and manoeuvrability during walking.
Proc Biol Sci. 2024 Dec;291(2036):20242040. doi: 10.1098/rspb.2024.2040. Epub 2024 Dec 11.
5
Probability of lateral instability while walking on winding paths.
J Biomech. 2024 Nov;176:112361. doi: 10.1016/j.jbiomech.2024.112361. Epub 2024 Oct 5.
6
Gait stability improves following unilateral total ankle arthroplasty.
J Orthop Res. 2025 Feb;43(2):388-395. doi: 10.1002/jor.25992. Epub 2024 Oct 10.
7
Modelling strategies supplemental to foot placement for frontal-plane stability in walking.
J R Soc Interface. 2024 Sep;21(218):20240191. doi: 10.1098/rsif.2024.0191. Epub 2024 Sep 4.
8
How older adults maintain lateral balance while walking on narrowing paths.
Gait Posture. 2024 Sep;113:32-39. doi: 10.1016/j.gaitpost.2024.05.028. Epub 2024 Jun 3.
9
The condition for dynamic stability in humans walking with feedback control.
PLoS Comput Biol. 2024 Mar 18;20(3):e1011861. doi: 10.1371/journal.pcbi.1011861. eCollection 2024 Mar.
10
Dynamic stability during level walking and obstacle crossing in children aged 2-5 years estimated by marker-less motion capture.
Front Sports Act Living. 2023 Apr 6;5:1109581. doi: 10.3389/fspor.2023.1109581. eCollection 2023.

本文引用的文献

1
Viability, task switching, and fall avoidance of the simplest dynamic walker.
Sci Rep. 2022 May 30;12(1):8993. doi: 10.1038/s41598-022-11966-3.
2
Small directional treadmill perturbations induce differential gait stability adaptation.
J Neurophysiol. 2022 Jan 1;127(1):38-55. doi: 10.1152/jn.00091.2021. Epub 2021 Dec 1.
3
Use of the margin of stability to quantify stability in pathologic gait - a qualitative systematic review.
BMC Musculoskelet Disord. 2021 Jun 28;22(1):597. doi: 10.1186/s12891-021-04466-4.
4
Strategies for maintaining dynamic balance in persons with neurological disorders during overground walking.
Proc Inst Mech Eng H. 2021 Sep;235(9):1079-1087. doi: 10.1177/09544119211023624. Epub 2021 Jun 11.
5
Margins of stability of persons with transtibial or transfemoral amputations walking on sloped surfaces.
J Biomech. 2021 Jun 23;123:110453. doi: 10.1016/j.jbiomech.2021.110453. Epub 2021 Apr 18.
6
Falls in young adults: The effect of sex, physical activity, and prescription medications.
PLoS One. 2021 Apr 22;16(4):e0250360. doi: 10.1371/journal.pone.0250360. eCollection 2021.
7
Walking humans trade off different task goals to regulate lateral stepping.
J Biomech. 2021 Apr 15;119:110314. doi: 10.1016/j.jbiomech.2021.110314. Epub 2021 Feb 10.
8
Dynamic stability in cerebral palsy during walking and running: Predictors and regulation strategies.
Gait Posture. 2021 Feb;84:329-334. doi: 10.1016/j.gaitpost.2020.12.031. Epub 2020 Dec 31.
9
How persons with transtibial amputation regulate lateral stepping while walking in laterally destabilizing environments.
Gait Posture. 2021 Jan;83:88-95. doi: 10.1016/j.gaitpost.2020.09.031. Epub 2020 Oct 5.
10
Incidence and circumstances of falls among middle-aged women: a cohort study.
Osteoporos Int. 2021 Mar;32(3):505-513. doi: 10.1007/s00198-020-05617-4. Epub 2020 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验