Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Unit of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland.
Institute for Neuroscience and Physiology, University of Gothenburg, Sweden.
Mol Metab. 2022 Dec;66:101614. doi: 10.1016/j.molmet.2022.101614. Epub 2022 Oct 13.
Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice.
To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used.
Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and metabolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis.
Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis.
胰岛素在一个世纪前被发现,这一发现为糖尿病的首次救生治疗提供了可能。尽管仍存在争议,但近 100 份已发表的报告表明,胰岛素也存在于大脑中,其中大多数研究集中于下丘脑或皮质胰岛素生成细胞。然而,大脑中产生的胰岛素的确切功能仍知之甚少。在这里,我们鉴定了后脑迷走神经复合体(DVC)中的胰岛素表达,并确定了这种来源的胰岛素在进食和代谢中的作用,以及其对小鼠饮食诱导肥胖的反应。
为了确定 Ins2 产生神经元在小鼠进食行为中的贡献,我们使用了跨转基因 RipHER-cre 小鼠和表达通道视紫红质-2 的动物的杂交,这使我们能够在体内对表达 Ins2 的神经元进行光遗传刺激。为了确认 Rip 标记的 DVC 细胞中存在胰岛素表达,我们使用了原位杂交。为了确定通过光遗传刺激发现的特定作用,我们使用了选择性的、中枢神经系统应用的胰岛素受体拮抗剂。为了了解在 hindbrain 中产生的胰岛素的生理贡献,我们使用了病毒基因敲低策略。
在大鼠胰岛素启动子(Rip)转基因小鼠中,胰岛素基因表达和胰岛素启动子驱动荧光的存在在下丘脑被检测到,但也在 DVC 中被检测到。胰岛素 mRNA 存在于 DVC 中几乎所有荧光标记的细胞中。在小鼠中,饮食诱导的肥胖以神经解剖学上不同的方式改变了大脑胰岛素基因的表达;虽然在下丘脑发现了预期的肥胖诱导的减少,但在 DVC 中,饮食诱导的肥胖导致了胰岛素基因的表达增加。这使我们假设胰岛素在这两个脑区可能具有不同的能量平衡作用。为了确定激活 DVC 中胰岛素生成神经元的急性影响,我们利用 Rip 转基因小鼠中的光敏感通道视紫红质 2 对光进行刺激。DVC 胰岛素神经元的光遗传光激活诱导了急性激活后的多食。这一多食反应被中枢应用胰岛素受体拮抗剂 S961 阻断,表明进食反应是由胰岛素驱动的。为了确定 DVC 胰岛素是否对进食和代谢有必要的贡献,我们使用了病毒基因敲低(KD)策略,该策略允许在成年小鼠中对胰岛素基因进行特定部位的降低。虽然在正常饮食的小鼠中,没有发现对 KD 的进食或产热有任何变化,但在高脂肪饮食的挑战下,小鼠的进食量减少。体重没有变化,可能是由于产热的代偿性减少所致。
总的来说,我们的数据表明,后脑胰岛素和胰岛素生成细胞在能量平衡中起着重要作用。