Suppr超能文献

体外体节中的人类节段时钟的再生。

Regeneration of the human segmentation clock in somitoids in vitro.

机构信息

CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

出版信息

EMBO J. 2022 Dec 1;41(23):e110928. doi: 10.15252/embj.2022110928. Epub 2022 Oct 17.

Abstract

Each vertebrate species appears to have a unique timing mechanism for forming somites along the vertebral column, and the process in human remains poorly understood at the molecular level due to technical and ethical limitations. Here, we report the reconstitution of human segmentation clock by direct reprogramming. We first reprogrammed human urine epithelial cells to a presomitic mesoderm (PSM) state capable of long-term self-renewal and formation of somitoids with an anterior-to-posterior axis. By inserting the RNA reporter Pepper into HES7 and MESP2 loci of these iPSM cells, we show that both transcripts oscillate in the resulting somitoids at ~5 h/cycle. GFP-tagged endogenous HES7 protein moves along the anterior-to-posterior axis during somitoid formation. The geo-sequencing analysis further confirmed anterior-to-posterior polarity and revealed the localized expression of WNT, BMP, FGF, and RA signaling molecules and HOXA-D family members. Our study demonstrates the direct reconstitution of human segmentation clock from somatic cells, which may allow future dissection of the mechanism and components of such a clock and aid regenerative medicine.

摘要

每个脊椎动物物种似乎都有一个独特的时间机制来沿着脊椎形成体节,由于技术和伦理限制,人类的这一过程在分子水平上仍然知之甚少。在这里,我们报告了通过直接重编程重建人类体节时钟。我们首先将人尿上皮细胞重编程为具有长期自我更新能力并能够形成具有前后轴的体节样结构的前体节中胚层(PSM)状态。通过将 RNA 报告器 Pepper 插入这些 iPSM 细胞的 HES7 和 MESP2 基因座,我们表明这两个转录本在产生的体节样结构中以约 5 小时/周期振荡。GFP 标记的内源性 HES7 蛋白在体节样结构形成过程中沿前后轴移动。geo 测序分析进一步证实了前后极性,并揭示了 WNT、BMP、FGF 和 RA 信号分子以及 HOXA-D 家族成员的局部表达。我们的研究表明,可以从体细胞中直接重建人类体节时钟,这可能有助于未来对这种时钟的机制和组成进行剖析,并有助于再生医学的发展。

相似文献

1
Regeneration of the human segmentation clock in somitoids in vitro.
EMBO J. 2022 Dec 1;41(23):e110928. doi: 10.15252/embj.2022110928. Epub 2022 Oct 17.
3
From dynamic expression patterns to boundary formation in the presomitic mesoderm.
PLoS Comput Biol. 2012;8(6):e1002586. doi: 10.1371/journal.pcbi.1002586. Epub 2012 Jun 28.
4
Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites.
PLoS Genet. 2009 Sep;5(9):e1000662. doi: 10.1371/journal.pgen.1000662. Epub 2009 Sep 25.
5
Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis.
Development. 2008 Aug;135(15):2555-62. doi: 10.1242/dev.019877. Epub 2008 Jun 25.
6
Dynamic Delta-like1 expression in presomitic mesoderm cells during somite segmentation.
Gene Expr Patterns. 2020 Jan;35:119094. doi: 10.1016/j.gep.2019.119094. Epub 2019 Dec 31.
7
Oscillatory links of Fgf signaling and Hes7 in the segmentation clock.
Curr Opin Genet Dev. 2013 Aug;23(4):484-90. doi: 10.1016/j.gde.2013.02.005. Epub 2013 Mar 4.
8
Oscillatory gene expression and somitogenesis.
Wiley Interdiscip Rev Dev Biol. 2012 Sep-Oct;1(5):629-41. doi: 10.1002/wdev.46. Epub 2012 Mar 22.
9
Analysis of her1 and her7 mutants reveals a spatio temporal separation of the somite clock module.
PLoS One. 2012;7(6):e39073. doi: 10.1371/journal.pone.0039073. Epub 2012 Jun 18.
10
Presomitic mesoderm-specific expression of the transcriptional repressor is controlled by E-box, T-box, and Notch signaling pathways.
J Biol Chem. 2018 Aug 3;293(31):12167-12176. doi: 10.1074/jbc.RA118.003728. Epub 2018 Jun 12.

引用本文的文献

1
Progress in understanding the vertebrate segmentation clock.
Nat Rev Genet. 2025 Mar 4. doi: 10.1038/s41576-025-00813-6.
2
Cpt1a Drives primed-to-naïve pluripotency transition through lipid remodeling.
Commun Biol. 2024 Sep 30;7(1):1223. doi: 10.1038/s42003-024-06874-3.
3
Reprogramming human urine cells into intestinal organoids with long-term expansion ability and barrier function.
Heliyon. 2024 Jun 27;10(13):e33736. doi: 10.1016/j.heliyon.2024.e33736. eCollection 2024 Jul 15.
4
Generation of musculoskeletal cells from human urine epithelium-derived presomitic mesoderm cells.
Cell Biosci. 2024 Jul 15;14(1):93. doi: 10.1186/s13578-024-01274-w.

本文引用的文献

1
The zebrafish presomitic mesoderm elongates through compaction-extension.
Cells Dev. 2021 Dec;168:203748. doi: 10.1016/j.cdev.2021.203748. Epub 2021 Sep 28.
2
Stem cell-based models of embryos: The need for improved naming conventions.
Stem Cell Reports. 2021 May 11;16(5):1014-1020. doi: 10.1016/j.stemcr.2021.02.018. Epub 2021 Mar 25.
3
maintains levels critical for normal somite segmentation clock function.
Elife. 2020 Nov 19;9:e55608. doi: 10.7554/eLife.55608.
4
Altered BMP-Smad4 signaling causes complete cleft palate by disturbing osteogenesis in palatal mesenchyme.
J Mol Histol. 2021 Feb;52(1):45-61. doi: 10.1007/s10735-020-09922-4. Epub 2020 Nov 7.
5
Species-specific segmentation clock periods are due to differential biochemical reaction speeds.
Science. 2020 Sep 18;369(6510):1450-1455. doi: 10.1126/science.aba7668.
6
Hedgehog-FGF signaling axis patterns anterior mesoderm during gastrulation.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15712-15723. doi: 10.1073/pnas.1914167117. Epub 2020 Jun 19.
7
An in vitro model of early anteroposterior organization during human development.
Nature. 2020 Jun;582(7812):410-415. doi: 10.1038/s41586-020-2383-9. Epub 2020 Jun 11.
9
Recapitulating the human segmentation clock with pluripotent stem cells.
Nature. 2020 Apr;580(7801):124-129. doi: 10.1038/s41586-020-2144-9. Epub 2020 Apr 1.
10
Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids.
Nature. 2020 Jun;582(7812):405-409. doi: 10.1038/s41586-020-2024-3. Epub 2020 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验