Suppr超能文献

从体节前中胚层的动态表达模式到边界形成。

From dynamic expression patterns to boundary formation in the presomitic mesoderm.

机构信息

Institute of Experimental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.

出版信息

PLoS Comput Biol. 2012;8(6):e1002586. doi: 10.1371/journal.pcbi.1002586. Epub 2012 Jun 28.

Abstract

The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.

摘要

脊椎动物体的分段是在早期胚胎发生过程中建立的。信号梯度的形成、Notch-、Fgf-和 Wnt 通路基因的周期性表达及其在未分段的体节前中胚层 (PSM) 中的相互作用,先于其前端新生体节的有节奏芽生,后者后来发育成上皮化结构,即体节。尽管已经存在许多描述体节发生部分方面的计算模型,但从生长区的基因表达到多个细胞相互作用再到分段的完整因果链的模拟却很少见。在这里,我们在一个模拟程序中为老鼠提供了一个增强的基因调控网络 (GRN),该程序通过许多虚拟细胞来模拟生长的 PSM,并整合了 WNT3A 和 FGF8 梯度形成、周期性基因表达和 Delta/Notch 信号。假设 Hes7 是体节发生时钟的核心,LFNG 是调节剂,我们假设 Hes7 对 Dll1 的负反馈导致体内观察到的 Dll1 表达呈振荡性。此外,我们能够模拟实验观察到的激活的 NOTCH (NICD) 波作为 GRN 中相互作用的结果。我们认为我们的模型在广泛的参数值范围内具有稳健性,Hes7 mRNA 和蛋白质的衰减对核心振荡器有很强的影响。此外,我们的模型预测了当它们的固有频率不同时,Hes1 和 HES7 振荡器之间会发生干扰。总之,我们构建了一个以 Hes7 为核心振荡器的全面体节发生模型,能够重现老鼠体内许多实验观察到的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c744/3386180/e5ae57231f46/pcbi.1002586.g001.jpg

相似文献

1
From dynamic expression patterns to boundary formation in the presomitic mesoderm.
PLoS Comput Biol. 2012;8(6):e1002586. doi: 10.1371/journal.pcbi.1002586. Epub 2012 Jun 28.
2
Hopf bifurcation in the presomitic mesoderm during the mouse segmentation.
J Theor Biol. 2009 Jul 7;259(1):176-89. doi: 10.1016/j.jtbi.2009.02.007. Epub 2009 Feb 21.
3
Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites.
PLoS Genet. 2009 Sep;5(9):e1000662. doi: 10.1371/journal.pgen.1000662. Epub 2009 Sep 25.
4
A multi-cell, multi-scale model of vertebrate segmentation and somite formation.
PLoS Comput Biol. 2011 Oct;7(10):e1002155. doi: 10.1371/journal.pcbi.1002155. Epub 2011 Oct 6.
5
Dynamic Delta-like1 expression in presomitic mesoderm cells during somite segmentation.
Gene Expr Patterns. 2020 Jan;35:119094. doi: 10.1016/j.gep.2019.119094. Epub 2019 Dec 31.
6
Oscillatory gene expression and somitogenesis.
Wiley Interdiscip Rev Dev Biol. 2012 Sep-Oct;1(5):629-41. doi: 10.1002/wdev.46. Epub 2012 Mar 22.
7
Presomitic mesoderm-specific expression of the transcriptional repressor is controlled by E-box, T-box, and Notch signaling pathways.
J Biol Chem. 2018 Aug 3;293(31):12167-12176. doi: 10.1074/jbc.RA118.003728. Epub 2018 Jun 12.
8
Mouse Ripply2 is downstream of Wnt3a and is dynamically expressed during somitogenesis.
Dev Dyn. 2007 Nov;236(11):3167-72. doi: 10.1002/dvdy.21342.
9
Oscillator mechanism of Notch pathway in the segmentation clock.
Dev Dyn. 2007 Jun;236(6):1403-9. doi: 10.1002/dvdy.21114.

引用本文的文献

2
Time and space in segmentation.
Interface Focus. 2021 Apr 16;11(3):20200049. doi: 10.1098/rsfs.2020.0049. eCollection 2021 Jun 6.
3
A mechanical model of early somite segmentation.
iScience. 2021 Mar 16;24(4):102317. doi: 10.1016/j.isci.2021.102317. eCollection 2021 Apr 23.
4
A theoretical model of neural maturation in the developing chick spinal cord.
PLoS One. 2020 Dec 18;15(12):e0244219. doi: 10.1371/journal.pone.0244219. eCollection 2020.
5
Correction: From Dynamic Expression Patterns to Boundary Formation in the Presomitic Mesoderm.
PLoS Comput Biol. 2019 Jul 2;15(7):e1007191. doi: 10.1371/journal.pcbi.1007191. eCollection 2019 Jul.
7
Sequential pattern formation governed by signaling gradients.
Phys Biol. 2016 Oct 11;13(5):05LT03. doi: 10.1088/1478-3975/13/5/05LT03.
8
Time-Delayed Models of Gene Regulatory Networks.
Comput Math Methods Med. 2015;2015:347273. doi: 10.1155/2015/347273. Epub 2015 Oct 20.
10
Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition.
PLoS Comput Biol. 2014 Oct 2;10(10):e1003843. doi: 10.1371/journal.pcbi.1003843. eCollection 2014 Oct.

本文引用的文献

1
Galactose differentially modulates lunatic and manic fringe effects on Delta1-induced NOTCH signaling.
J Biol Chem. 2012 Jan 2;287(1):474-483. doi: 10.1074/jbc.M111.317578. Epub 2011 Nov 11.
2
A multi-cell, multi-scale model of vertebrate segmentation and somite formation.
PLoS Comput Biol. 2011 Oct;7(10):e1002155. doi: 10.1371/journal.pcbi.1002155. Epub 2011 Oct 6.
3
4
Evolutionary plasticity of segmentation clock networks.
Development. 2011 Jul;138(13):2783-92. doi: 10.1242/dev.063834.
6
Uncoupling of retinoic acid signaling from tailbud development before termination of body axis extension.
Genesis. 2011 Oct;49(10):776-83. doi: 10.1002/dvg.20763. Epub 2011 Aug 24.
8
Intronic delay is essential for oscillatory expression in the segmentation clock.
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3300-5. doi: 10.1073/pnas.1014418108. Epub 2011 Feb 7.
9
Assembly of a Notch transcriptional activation complex requires multimerization.
Mol Cell Biol. 2011 Apr;31(7):1396-408. doi: 10.1128/MCB.00360-10. Epub 2011 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验