Department of Health Management, Fujian Health College, Fuzhou 350101, China.
College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Comput Math Methods Med. 2022 Oct 6;2022:8375981. doi: 10.1155/2022/8375981. eCollection 2022.
The robust segmentation of organs from the medical image is the key technique in medical image analysis for disease diagnosis. U-Net is a robust structure for medical image segmentation. However, U-Net adopts consecutive downsampling encoders to capture multiscale features, resulting in the loss of contextual information and insufficient recovery of high-level semantic features. In this paper, we present a new multibranch hybrid attention network (MHA-Net) to capture more contextual information and high-level semantic features. The main idea of our proposed MHA-Net is to use the multibranch hybrid attention feature decoder to recover more high-level semantic features. The lightweight pyramid split attention (PSA) module is used to connect the encoder and decoder subnetwork to obtain a richer multiscale feature map. We compare the proposed MHA-Net to state-of-art approaches on the DRIVE dataset, the fluoroscopic roentgenographic stereophotogrammetric analysis X-ray dataset, and the polyp dataset. The experimental results on different modal images reveal that our proposed MHA-Net provides better segmentation results than other segmentation approaches.
从医学图像中进行器官的稳健分割是医学图像分析用于疾病诊断的关键技术。U-Net 是医学图像分割的一种强大结构。然而,U-Net 采用连续的下采样编码器来捕获多尺度特征,导致上下文信息的丢失和高级语义特征的不足恢复。在本文中,我们提出了一种新的多分支混合注意力网络(MHA-Net),以捕获更多的上下文信息和高级语义特征。我们提出的 MHA-Net 的主要思想是使用多分支混合注意力特征解码器来恢复更多的高级语义特征。使用轻量级金字塔分割注意力(PSA)模块连接编码器和解码器子网,以获得更丰富的多尺度特征图。我们在 DRIVE 数据集、荧光透视射线立体摄影分析 X 射线数据集和息肉数据集上与最先进的方法进行了比较。对不同模态图像的实验结果表明,我们提出的 MHA-Net 提供了比其他分割方法更好的分割结果。