Suppr超能文献

MADR-Net:用于医学图像分割的多层次注意扩张残差神经网络。

MADR-Net: multi-level attention dilated residual neural network for segmentation of medical images.

机构信息

Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.

出版信息

Sci Rep. 2024 Jun 3;14(1):12699. doi: 10.1038/s41598-024-63538-2.

Abstract

Medical image segmentation has made a significant contribution towards delivering affordable healthcare by facilitating the automatic identification of anatomical structures and other regions of interest. Although convolution neural networks have become prominent in the field of medical image segmentation, they suffer from certain limitations. In this study, we present a reliable framework for producing performant outcomes for the segmentation of pathological structures of 2D medical images. Our framework consists of a novel deep learning architecture, called deep multi-level attention dilated residual neural network (MADR-Net), designed to improve the performance of medical image segmentation. MADR-Net uses a U-Net encoder/decoder backbone in combination with multi-level residual blocks and atrous pyramid scene parsing pooling. To improve the segmentation results, channel-spatial attention blocks were added in the skip connection to capture both the global and local features and superseded the bottleneck layer with an ASPP block. Furthermore, we introduce a hybrid loss function that has an excellent convergence property and enhances the performance of the medical image segmentation task. We extensively validated the proposed MADR-Net on four typical yet challenging medical image segmentation tasks: (1) Left ventricle, left atrium, and myocardial wall segmentation from Echocardiogram images in the CAMUS dataset, (2) Skin cancer segmentation from dermoscopy images in ISIC 2017 dataset, (3) Electron microscopy in FIB-SEM dataset, and (4) Fluid attenuated inversion recovery abnormality from MR images in LGG segmentation dataset. The proposed algorithm yielded significant results when compared to state-of-the-art architectures such as U-Net, Residual U-Net, and Attention U-Net. The proposed MADR-Net consistently outperformed the classical U-Net by 5.43%, 3.43%, and 3.92% relative improvement in terms of dice coefficient, respectively, for electron microscopy, dermoscopy, and MRI. The experimental results demonstrate superior performance on single and multi-class datasets and that the proposed MADR-Net can be utilized as a baseline for the assessment of cross-dataset and segmentation tasks.

摘要

医学图像分割通过自动识别解剖结构和其他感兴趣区域,为提供负担得起的医疗保健做出了重大贡献。尽管卷积神经网络在医学图像分割领域已经变得突出,但它们存在某些局限性。在这项研究中,我们提出了一个可靠的框架,用于为 2D 医学图像的病理结构分割生成高性能的结果。我们的框架由一个新的深度学习架构组成,称为深度多级注意扩张残差神经网络(MADR-Net),旨在提高医学图像分割的性能。MADR-Net 使用 U-Net 编码器/解码器骨干与多级残差块和空洞金字塔场景解析池相结合。为了提高分割结果,在跳过连接中添加了通道-空间注意块,以捕获全局和局部特征,并使用 ASPP 块替代瓶颈层。此外,我们引入了一种混合损失函数,该函数具有出色的收敛特性,增强了医学图像分割任务的性能。我们在四个典型但具有挑战性的医学图像分割任务上广泛验证了所提出的 MADR-Net:(1)CAMUS 数据集的超声心动图图像中的左心室、左心房和心肌壁分割,(2)ISIC 2017 数据集的皮肤癌分割,(3)FIB-SEM 数据集的电子显微镜图像,(4)LGG 分割数据集中的 MR 图像的液体衰减反转恢复异常。与 U-Net、Residual U-Net 和 Attention U-Net 等最先进的架构相比,所提出的算法产生了显著的结果。所提出的 MADR-Net 在电子显微镜、皮肤镜和 MRI 方面,分别以相对提高 5.43%、3.43%和 3.92%的骰子系数持续优于经典的 U-Net。实验结果表明,该方法在单类和多类数据集上都具有优越的性能,并且可以将所提出的 MADR-Net 用作评估跨数据集和分割任务的基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dcc/11148105/180833dfd3c3/41598_2024_63538_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验