Suppr超能文献

利用 Laney p' 控制图监测约旦的 COVID-19 病例。

Using the Laney p' Control Chart for Monitoring COVID-19 Cases in Jordan.

机构信息

The Department of Industrial Engineering, The University of Jordan, Amman, Jordan.

出版信息

J Healthc Eng. 2022 Sep 19;2022:6711592. doi: 10.1155/2022/6711592. eCollection 2022.

Abstract

In this research, we examine the use of the Laney p' control chart and the application of test rules to assess governmental interventions throughout the COVID-19 pandemic and understand how certain activities and events that took place affected the infection rate. Data for the infection rate (IR) were collected between October 31, 2020, and March 19, 2022. The IR was calculated by dividing the number of confirmed cases by the number of PCR (polymerase chain reaction) tests performed. The IR data were subsequently plotted on the Laney p' control charts using the Minitab software. The charts thereby allowed us to study the effects on infection rates of the government's moves to restrict the movements and activities of the population, as well as the results of easing these restrictions. The restrictive measures proved to be effective in decreasing the infection rate, whereas relaxing these measures had the opposite effect. Typically, test signals are considered as an indication of a change in a process, although in some situations we have observed that slight changes are not accompanied by a signal. Regardless, the analysis shows cases where using test rules rapidly detected patterns and changes in IR, and allowing remedial action to be taken without delay. In this study, we use the Laney p' control chart to monitor the COVID-19 IR and compare its performance with that of the EWMA control chart. In addition, we analyze the performance of various test rules in detecting IR changes. Comparing the Laney p' control chart with the EWMA control chart, the data showed that in most cases, the Laney p' control chart was able to identify the change of IR faster. Comparing the performance of different tests in detecting changes in the IR, one can see that no particular test outperformed the others in all cases. We also recommend analyzing the data points in both single-stage and multistage analyses in accordance with this new perspective rather than the traditional one used in process improvement projects. Accordingly, the single-stage analysis gives a complete picture of how the infection rate is changing overall, whereas the multistage analysis is more sensitive to small changes.

摘要

在这项研究中,我们检验了莱尼 p'控制图的使用以及测试规则的应用,以评估 COVID-19 大流行期间的政府干预措施,并了解发生的某些活动和事件如何影响感染率。感染率(IR)的数据收集于 2020 年 10 月 31 日至 2022 年 3 月 19 日。IR 通过将确诊病例数除以进行的聚合酶链反应(PCR)测试数来计算。随后,使用 Minitab 软件将 IR 数据绘制在莱尼 p'控制图上。这些图表使我们能够研究政府限制人口流动和活动的措施对感染率的影响,以及放宽这些限制的结果。事实证明,限制措施在降低感染率方面非常有效,而放宽这些措施则产生了相反的效果。通常,测试信号被认为是过程变化的指示,尽管在某些情况下,我们观察到轻微的变化没有伴随信号。无论如何,分析表明,在某些情况下,使用测试规则可以快速检测到 IR 的模式和变化,并允许立即采取补救措施。在这项研究中,我们使用莱尼 p'控制图来监测 COVID-19 的 IR,并将其性能与 EWMA 控制图进行比较。此外,我们分析了各种测试规则在检测 IR 变化方面的性能。将莱尼 p'控制图与 EWMA 控制图进行比较,数据表明,在大多数情况下,莱尼 p'控制图能够更快地识别 IR 的变化。比较不同测试在检测 IR 变化方面的性能,可以看出在所有情况下,没有特定的测试在所有情况下都优于其他测试。我们还建议根据这一新视角而不是传统的用于过程改进项目的视角来分析单阶段和多阶段分析中的数据点。因此,单阶段分析提供了感染率整体变化的全貌,而多阶段分析对小变化更敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0e/9553754/692ec3e85357/JHE2022-6711592.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验