Suppr超能文献

利用婴儿死亡率数据改善母婴健康项目:统计过程控制技术在罕见事件中的应用

Using Infant Mortality Data to Improve Maternal and Child Health Programs: An Application of Statistical Process Control Techniques for Rare Events.

作者信息

Finnerty Patricia, Provost Lloyd, O'Donnell Emily, Selk Sabrina, Stephens Kaerin, Kim Jamie, Berns Scott

机构信息

Education Development Center, 43 Foundry Ave, Waltham, MA, 02453, USA.

Associates in Process Improvement, 2000 Red Hawk Rd, Wimberley, TX, 78676, USA.

出版信息

Matern Child Health J. 2019 Jun;23(6):739-745. doi: 10.1007/s10995-018-02710-3.

Abstract

Introduction The infant mortality rate (IMR) in the United States remains higher than most developed countries. To understand this public health issue and support state public health departments in displaying and analyzing data in ways that support learning, states participating in the Collaborative Improvement and Innovation Network to Reduce Infant Mortality (IM CoIIN) created statistical process control (SPC) charts for rare events. Methods State vital records data on live births and infant deaths was used to create U, T and G charts for Kansas and Alaska, two states participating in the IM CoIIN who sought methods to more effectively analyze IMR for subsets of their populations with infrequent number of deaths. The IMR and the number of days and number of births between infant deaths was charted for Kansas Non-Hispanic black population and six Alaska regions for the time periods 2013-2016 and 2011-2016, respectively. Established empirical patterns indicated points of special cause variation. Results The T and G charts for Kansas and G charts for Alaska depict points outside the upper control limit. These points indicate special cause variation and an increased number of days and/or births between deaths at these time periods. Discussion T and G charts offer value in examining rare events, and indicate special causes not detectable by U charts or other more traditional analytic methods. When small numbers make traditional analysis challenging, SPC has potential in the MCH field to better understand potential drivers of improvements in rare outcomes, inform decision making and take interventions to scale.

摘要

引言 美国的婴儿死亡率(IMR)仍高于大多数发达国家。为了解这一公共卫生问题,并支持州公共卫生部门以有助于学习的方式展示和分析数据,参与降低婴儿死亡率协作改进与创新网络(IM CoIIN)的各州创建了针对罕见事件的统计过程控制(SPC)图表。方法 使用堪萨斯州和阿拉斯加州的出生及婴儿死亡的州生命记录数据创建U、T和G图表,这两个州参与了IM CoIIN,它们寻求方法以更有效地分析其人口中死亡人数较少的子群体的婴儿死亡率。分别针对2013 - 2016年期间堪萨斯州非西班牙裔黑人人口以及2011 - 2016年期间阿拉斯加州的六个地区,绘制了婴儿死亡率、婴儿死亡之间的天数以及出生数图表。既定的经验模式表明了特殊原因变异点。结果 堪萨斯州的T和G图表以及阿拉斯加州的G图表描绘出了超出控制上限的点。这些点表明存在特殊原因变异,并且在这些时间段内死亡之间的天数和/或出生数增加。讨论 T和G图表在检查罕见事件方面具有价值,并表明了U图表或其他更传统分析方法无法检测到的特殊原因。当小数据量使传统分析具有挑战性时,统计过程控制在妇幼保健领域有潜力更好地理解罕见结果改善的潜在驱动因素、为决策提供信息并扩大干预措施的规模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验