Suppr超能文献

一种具有线性不确定性分布的跟踪误差约束下的新投资组合优化模型。

A New Portfolio Optimization Model Under Tracking-Error Constraint with Linear Uncertainty Distributions.

作者信息

Yang Tingting, Huang Xiaoxia

机构信息

School of Economics, Changzhou University, Jiangsu, Changzhou China.

School of Economics and Management, University of Science and Technology Beijing, Beijing, China.

出版信息

J Optim Theory Appl. 2022;195(2):723-747. doi: 10.1007/s10957-022-02116-w. Epub 2022 Oct 11.

Abstract

Enhanced index tracking problem is the issue of selecting a tracking portfolio to outperform the benchmark return with a minimum tracking error. In this paper, we address the enhanced index tracking problem based on uncertainty theory where stock returns are treated as uncertain variables instead of random variables. First, we propose a nonlinear uncertain optimization model, i.e., uncertain mean-absolute downside deviation enhanced index tracking model. Then, we give the analytical solution of the proposed optimization model when stock returns take linear uncertainty distributions. Based on the solution, we find that tracking portfolio frontier is a continuous curve composed of at most different line segments. Furthermore, we give the condition that tracking portfolio return and risk increase with benchmark return and risk, respectively. Finally, we offer some experiments and show that our proposed model is effective in controlling the tracking error.

摘要

增强型指数跟踪问题是选择一个跟踪投资组合以在最小跟踪误差的情况下超越基准回报的问题。在本文中,我们基于不确定性理论解决增强型指数跟踪问题,其中股票回报被视为不确定变量而非随机变量。首先,我们提出一个非线性不确定优化模型,即不确定均值 - 绝对下行偏差增强型指数跟踪模型。然后,当股票回报呈线性不确定性分布时,我们给出所提出优化模型的解析解。基于该解,我们发现跟踪投资组合前沿是由至多不同线段组成的连续曲线。此外,我们给出跟踪投资组合回报和风险分别随基准回报和风险增加的条件。最后,我们进行了一些实验,并表明我们提出的模型在控制跟踪误差方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/426c/9552167/66b3d960c208/10957_2022_2116_Fig1_HTML.jpg

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验