Suppr超能文献

用有限的一组强度来描述小角散射轮廓。

Describing small-angle scattering profiles by a limited set of intensities.

作者信息

Grant Thomas D

机构信息

Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA.

出版信息

J Appl Crystallogr. 2022 Aug 30;55(Pt 5):1116-1124. doi: 10.1107/S1600576722006598. eCollection 2022 Oct 1.

Abstract

Small-angle scattering (SAS) probes the size and shape of particles at low resolution through the analysis of the scattering of X-rays or neutrons passing through a solution of particles. One approach to extracting structural information from SAS data is the indirect Fourier transform (IFT). The IFT approach parameterizes the real-space pair distribution function [()] of a particle using a set of basis functions, which simultaneously determines the scattering profile [()] using corresponding reciprocal-space basis functions. This article presents an extension of an IFT algorithm proposed by Moore [ (1980), , 168-175] which used a trigonometric series to describe the basis functions, where the real-space and reciprocal-space basis functions are Fourier mates. An equation is presented relating the Moore coefficients to the intensities of the SAS profile at specific positions, as well as a series of new equations that describe the size and shape parameters of a particle from this distinct set of intensity values. An analytical real-space regularizer is derived to smooth the () curve and ameliorate systematic deviations caused by series termination. Regularization is commonly used in IFT methods though not described in Moore's original approach, which is particularly susceptible to such effects. The algorithm is provided as a script, denss.f it_data.py, as part of the software package for SAS, which includes both command line and interactive graphical interfaces. Results of the program using experimental data show that it is as accurate as, and often more accurate than, existing tools.

摘要

小角散射(SAS)通过分析穿过颗粒溶液的X射线或中子的散射,在低分辨率下探测颗粒的大小和形状。从SAS数据中提取结构信息的一种方法是间接傅里叶变换(IFT)。IFT方法使用一组基函数对颗粒的实空间对分布函数[()]进行参数化,同时使用相应的倒易空间基函数确定散射轮廓[()]。本文介绍了Moore[(1980),,168 - 175]提出的IFT算法的扩展,该算法使用三角级数来描述基函数,其中实空间和倒易空间基函数是傅里叶对偶。给出了一个将Moore系数与SAS轮廓在特定位置的强度相关联的方程,以及一系列从这组不同的强度值描述颗粒大小和形状参数的新方程。推导了一种解析实空间正则化器,以平滑()曲线并改善由级数终止引起的系统偏差。正则化在IFT方法中常用,但Moore的原始方法中未描述,该方法特别容易受到此类影响。该算法作为一个脚本denss.f it_data.py提供,作为SAS软件包的一部分,该软件包包括命令行和交互式图形界面。使用实验数据的程序结果表明,它与现有工具一样准确,而且通常更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e261/9533761/c70364a57e51/j-55-01116-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验