Patel Sanjay V, Camp Jon J, Hodge David O, Baratz Keith H, Holmes David R
Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota.
Biomedical Imaging Resource, Mayo Clinic, Rochester, Minnesota.
Ophthalmol Sci. 2022 Feb 22;2(2):100128. doi: 10.1016/j.xops.2022.100128. eCollection 2022 Jun.
To develop a model to predict corneal improvement after Descemet membrane endothelial keratoplasty (DMEK) for Fuchs endothelial corneal dystrophy (FECD) from Scheimpflug tomography.
Cross-sectional study.
Forty-eight eyes (derivation group) and 45 eyes (validation group) with a range of severity of FECD undergoing DMEK.
Scheimpflug images were obtained before and after DMEK. Before DMEK, pachymetry map and posterior elevation map patterns were quantified by a special image analysis program measuring tomographic features of edema (loss of regular isopachs, displacement of the thinnest point of the cornea, posterior surface depression). Image-derived novel parameters were combined with instrument-derived parameters, and the relative influences of parameters associated with the change in central corneal thickness (CCT) after DMEK in the derivation group were determined by using a gradient boosting machine learning model. The parameters with highest relative influence were then fit in a linear regression model. The derived model was applied to the validation group. Correlations and agreement were assessed between predicted and observed changes in CCT.
Predictive power ( ) and mean difference between predicted and observed change in CCT.
The gradient boosting machine model identified 4 novel parameters of isopach circularity and eccentricity and 1 instrument-derived parameter (posterior surface radius); preoperative CCT was a poor predictor. In the derivation group, the model strongly predicted the change in CCT after DMEK ( = 0.80; 95% confidence interval [CI], 0.71-0.89) and the mean difference between predicted and observed change was, by definition, 0 μm. When the same 5 parameters were fit to the validation group, the model performed very highly ( = 0.89; 95% CI, 0.84-0.94). When the coefficient estimates from the derivation model were used to predict the change in CCT in the validation group, the predictive power was also high ( = 0.78; 95% CI, 0.68-0.88), and the mean difference was 4 μm (predicted minus observed).
Scheimpflug tomography maps of corneas with FECD can predict the improvement in CCT after DMEK, independent of preoperative corneal thickness measurement. The model could be applied in clinical practice or for clinical research of FECD.
建立一种模型,通过Scheimpflug断层扫描预测富克斯内皮角膜营养不良(FECD)患者接受Descemet膜内皮角膜移植术(DMEK)后角膜的改善情况。
横断面研究。
48只眼(推导组)和45只眼(验证组)患有不同严重程度FECD且接受DMEK手术的患者。
在DMEK手术前后获取Scheimpflug图像。在DMEK手术前,通过一个特殊的图像分析程序对角膜厚度测量图和后表面高度图模式进行量化,该程序可测量水肿的断层特征(规则等厚线的缺失、角膜最薄点的移位、后表面凹陷)。将图像衍生的新参数与仪器衍生的参数相结合,并使用梯度提升机器学习模型确定推导组中与DMEK术后中央角膜厚度(CCT)变化相关参数的相对影响。然后将相对影响最高的参数拟合到线性回归模型中。将推导得到的模型应用于验证组。评估预测的和观察到的CCT变化之间的相关性和一致性。
预测能力( )以及预测的和观察到的CCT变化之间的平均差异。
梯度提升机器模型识别出等厚线圆形度和偏心率的4个新参数以及1个仪器衍生参数(后表面半径);术前CCT是一个较差的预测指标。在推导组中,该模型能有力地预测DMEK术后CCT的变化( = 0.80;95%置信区间[CI],0.71 - 0.89),根据定义,预测的和观察到的变化之间的平均差异为0μm。当将相同的5个参数应用于验证组时,该模型表现非常出色( = 0.89;95% CI,0.84 - 0.94)。当使用推导模型的系数估计值来预测验证组中CCT的变化时,预测能力也很高( = 0.78;95% CI,0.68 - 0.88),平均差异为4μm(预测值减去观察值)。
FECD角膜的Scheimpflug断层扫描图可以预测DMEK术后CCT的改善情况,且与术前角膜厚度测量无关。该模型可应用于临床实践或FECD的临床研究。