Suppr超能文献

配备碳纳米管的CoMo层状双氢氧化物用于电催化析氧反应。

CoMo layered double hydroxide equipped with carbon nanotubes for electrocatalytic oxygen evolution reaction.

作者信息

Yan Xuesheng, Wang Zhaolong, Bao Jian, Song Yanhua, She Xiaojie, Yuan Junjie, Hua Yingjie, Lv Guoai, Li Huaming, Xu Hui

机构信息

Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China.

State Power Investment Group Hubei Branch, Wuhan 430061, People's Republic of China.

出版信息

Nanotechnology. 2022 Nov 28;34(6). doi: 10.1088/1361-6528/ac9abd.

Abstract

To carry out effective resource reforming of sustainable electricity, hydrogen production by electrochemical water splitting provides an eco-friendly and economical way. Nevertheless, the oxygen evolution reaction (OER) at the anode is limited by the slow reaction process, which hinders the large-scale development and application of electrolysis technology. In this work, we present an electrocatalyst with superior OER performance, which attributed to the abundant active sites and good electronic conductivity. The two-dimensional CoMo Layered Double Hydroxide nanosheets are synthesized and deposited on conductive carbon nanotubes (CoMo LDH/CNTs), and then hybrid composites show better catalytic performance than their undecorated counterpart under identical conditions. Specifically, CoMo LDH/CNTs exhibit the low overpotential of 268 mV to obtain 10 mA cmand satisfactory stability (more than 40 h). We emphasize that this hybridization strategy with a conductive supporting framework could design more abundant and low-cost OER electrocatalysts to minimize electrical energy consumption, thereby achieving efficient conversion between energy sources.

摘要

为了实现可持续电力的有效资源重整,通过电化学水分解制氢提供了一种环保且经济的方式。然而,阳极的析氧反应(OER)受到缓慢反应过程的限制,这阻碍了电解技术的大规模发展和应用。在这项工作中,我们展示了一种具有优异OER性能的电催化剂,这归因于其丰富的活性位点和良好的电子导电性。合成了二维CoMo层状双氢氧化物纳米片并将其沉积在导电碳纳米管上(CoMo LDH/CNTs),然后这种杂化复合材料在相同条件下比未修饰的对应物表现出更好的催化性能。具体而言,CoMo LDH/CNTs在获得10 mA cm时表现出268 mV的低过电位以及令人满意的稳定性(超过40小时)。我们强调,这种具有导电支撑框架的杂化策略可以设计出更丰富且低成本的OER电催化剂,以最小化电能消耗,从而实现能源之间的高效转换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验