Suppr超能文献

土壤氮素物质和反硝化群落调节中国黄河三角洲湿地的甲烷厌氧氧化。

Soil nitrogen substances and denitrifying communities regulate the anaerobic oxidation of methane in wetlands of Yellow River Delta, China.

机构信息

College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China.

College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China.

出版信息

Sci Total Environ. 2023 Jan 20;857(Pt 2):159439. doi: 10.1016/j.scitotenv.2022.159439. Epub 2022 Oct 15.

Abstract

Anaerobic oxidation of methane (AOM) in wetland soils is widely recognized as a key sink for the greenhouse gas methane (CH). The occurrence of this reaction is influenced by several factors, but the exact process and related mechanism of this reaction remain unclear, due to the complex interactions between multiple influencing factors in nature. Therefore, we investigated how environmental and microbial factors affect AOM in wetlands using laboratory incubation methods combined with molecular biology techniques. The results showed that wetland AOM was associated with a variety of environmental factors and microbial factors. The environmental factors include such as vegetation, depth, hydrogen ion concentration (pH), oxidation-reduction potential (ORP), electrical conductivity (EC), total nitrogen (TN), nitrate (NO), sulfate (SO), and nitrous oxide (NO) flux, among them, soil N substances (TN, NO, NO) have essential regulatory roles in the AOM process, while NO and NO may be the key electron acceptors driving the AOM process under the coexistence of multiple electron acceptors. Moreover, denitrification communities (narG, nirS, nirK, nosZI, nosZII) and anaerobic methanotrophic (ANME-2d) were identified as important functional microorganisms affecting the AOM process, which is largely regulated by the former. In the environmental context of growing global anthropogenic N inputs to wetlands, these findings imply that N cycle-mediated AOM processes are a more important CH sink for controlling global climate change. This studying contributes to the knowledge and prediction of wetland CH biogeochemical cycling and provides a microbial ecology viewpoint on the AOM response to global environmental change.

摘要

湿地土壤中的甲烷厌氧氧化(AOM)被广泛认为是温室气体甲烷(CH)的一个主要汇。由于自然界中多种影响因素的复杂相互作用,该反应的确切过程和相关机制仍不清楚。因此,我们采用实验室培养方法结合分子生物学技术,研究了环境和微生物因素如何影响湿地中的 AOM。结果表明,湿地 AOM 与多种环境因素和微生物因素有关。环境因素包括植被、深度、氢离子浓度(pH)、氧化还原电位(ORP)、电导率(EC)、总氮(TN)、硝酸盐(NO)、硫酸盐(SO)、氧化亚氮(NO)通量等,其中土壤 N 物质(TN、NO、NO)对 AOM 过程具有重要的调节作用,而在多种电子受体共存的情况下,NO 和 NO 可能是驱动 AOM 过程的关键电子受体。此外,还鉴定出反硝化群落(narG、nirS、nirK、nosZI、nosZII)和厌氧甲烷氧化菌(ANME-2d)是影响 AOM 过程的重要功能微生物,前者对后者的调节起主要作用。在全球人为 N 输入不断增加对湿地环境的影响下,这些发现表明,N 循环介导的 AOM 过程是控制全球气候变化的更重要的 CH 汇。本研究有助于了解和预测湿地 CH 生物地球化学循环,并从微生物生态学角度探讨了 AOM 对全球环境变化的响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验