Suppr超能文献

热带湿地中微生物还原天然有机物驱动的厌氧甲烷氧化

Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.

作者信息

Valenzuela Edgardo I, Prieto-Davó Alejandra, López-Lozano Nguyen E, Hernández-Eligio Alberto, Vega-Alvarado Leticia, Juárez Katy, García-González Ana Sarahí, López Mercedes G, Cervantes Francisco J

机构信息

División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México.

Facultad de Química, Unidad Sisal, Universidad Nacional Autónoma de México, Sisal, Yucatán, México.

出版信息

Appl Environ Microbiol. 2017 May 17;83(11). doi: 10.1128/AEM.00645-17. Print 2017 Jun 1.

Abstract

Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol CH oxidized · cm · day Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH · year in coastal wetlands and more than 1,300 Tg · year, considering the global wetland area. The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with CH and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor.

摘要

由于湿地含有大量天然有机物(NOM),它们构成了地球上甲烷的主要自然来源,但对于这些生境中支持甲烷营养活动的关键驱动因素,如电子受体,人们了解甚少。我们使用新鲜采集的沉积物以及从热带湿地采集的水样进行缺氧培养,并添加C - 甲烷(0.67个大气压),以测试其微生物群落进行与NOM腐殖质部分还原相关的甲烷厌氧氧化(AOM)的能力。收集到的证据表明,NOM中存在的电子接受官能团(如醌)通过作为终端电子受体来推动AOM。实际上,虽然硫酸盐还原是主要过程,占AOM活动的42.5%,但NOM的微生物还原也同时发生。此外,用外部NOM富集湿地沉积物提供了一种补充性的电子接受能力,其还原量约为100 nmol CH氧化·厘米·天。光谱证据表明,醌部分在湿地沉积物中分布不均,并且它们的还原在AOM过程中发生。此外,从进行与NOM还原相关的AOM的湿地沉积物中获得的富集物化学计量地氧化甲烷,同时伴随着腐殖质类似物蒽醌 - 2,6 - 二磺酸盐的还原。与NOM微生物还原相关的潜在参与AOM的微生物种群主要由与假定的AOM相关古菌不同的生物群主导。我们估计,考虑到全球湿地面积,这个微生物过程可能有助于沿海湿地每年减少多达114太克(Tg)的CH,在全球范围内每年减少超过1300 Tg。考虑到这种温室气体引发的全球变暖效应,确定控制自然系统甲烷排放的关键过程至关重要。与不同电子受体的微生物还原相关的甲烷厌氧氧化(AOM)在减轻生态系统甲烷排放方面起着关键作用。鉴于其高有机含量,湿地构成了大气甲烷的最大自然来源。然而,人们对这些环境中控制甲烷排放的过程了解甚少。在这里,我们提供了用CH进行的示踪分析和光谱证据,揭示了与自然有机物(NOM)中氧化还原官能团的微生物还原相关的AOM在热带湿地中占主导地位。我们认为,NOM的微生物还原可能在很大程度上有助于抑制热带湿地的甲烷排放。这是碳循环中的一条新途径,其中在有机营养环境中缓慢分解的NOM(如腐殖质部分)通过作为终端电子受体来推动AOM。

相似文献

4
Anaerobic oxidation of methane driven by different electron acceptors: A review.不同电子受体驱动的甲烷厌氧氧化:综述。
Sci Total Environ. 2024 Oct 10;946:174287. doi: 10.1016/j.scitotenv.2024.174287. Epub 2024 Jun 28.

引用本文的文献

本文引用的文献

1
Archaea catalyze iron-dependent anaerobic oxidation of methane.古生菌催化铁依赖型甲烷厌氧氧化。
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12792-12796. doi: 10.1073/pnas.1609534113. Epub 2016 Oct 24.
6
The contentious nature of soil organic matter.土壤有机质的争议性。
Nature. 2015 Dec 3;528(7580):60-8. doi: 10.1038/nature16069. Epub 2015 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验