National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, China.
Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
Angew Chem Int Ed Engl. 2022 Dec 12;61(50):e202211032. doi: 10.1002/anie.202211032. Epub 2022 Nov 10.
Fucosylation is one of the most common modifications of oligo-N-acetyllactosamine (oligo-LacNAc) glycans. However, none of known fucosyltransferases (FucTs) could install the α1,3-linked fucose to the oligo-LacNAc substrates in a site-specific manner. Here, we report a facile and general redox-controlled substrate engineering strategy for the site-specific α1,3-fucosylation of complex glycans containing multiple LacNAc units. This strategy takes advantage of an operationally simple oxidation enzyme module by using galactose oxidase (GOase) to convert the LacNAc unit into oxidized C6'-aldehyde LacNAc sequence, which is not a good substrate for recombinant α1,3-FucT from Helicobacter pylori strain 26695 (Hpα1,3FucT), enabling the site-specific α1,3-fucosylation at intact LacNAc sites. The general applicability and robustness of this strategy were demonstrated by the synthesis of a variety of structurally well-defined fucosides of linear and branched O- and N-linked glycans.
岩藻糖基化是寡 N-乙酰乳糖胺(oligo-LacNAc)聚糖最常见的修饰方式之一。然而,目前已知的岩藻糖基转移酶(FucTs)都无法以特异性方式将α1,3 连接的岩藻糖安装到寡 LacNAc 底物上。在这里,我们报道了一种简便且通用的氧化还原控制的底物工程策略,用于对含有多个 LacNAc 单元的复杂聚糖进行特异性α1,3-岩藻糖基化。该策略利用了一个操作简单的氧化酶模块,通过使用半乳糖氧化酶(GOase)将 LacNAc 单元转化为氧化的 C6'-醛基 LacNAc 序列,该序列不是来自幽门螺杆菌 26695 株的重组α1,3-FucT(Hpα1,3FucT)的良好底物,从而能够在完整的 LacNAc 位点进行特异性α1,3-岩藻糖基化。通过合成各种结构明确的线性和分支的 O-和 N-连接糖基化的岩藻糖苷,证明了该策略的普遍适用性和稳健性。