Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.
J Am Chem Soc. 2024 Apr 3;146(13):9230-9240. doi: 10.1021/jacs.4c00363. Epub 2024 Mar 17.
Keratan sulfate (KS) is a proteoglycan that is widely expressed in the extracellular matrix of various tissue types, where it performs multiple biological functions. KS is the least understood proteoglycan, which in part is due to a lack of panels of well-defined KS oligosaccharides that are needed for structure-binding studies, as analytical standards, to examine substrate specificities of keratinases, and for drug development. Here, we report a biomimetic approach that makes it possible to install, in a regioselective manner, sulfates and fucosides on oligo--acetyllactosamine (LacNAc) chains to provide any structural element of KS by using specific enzyme modules. It is based on the observation that α1,3-fucosides, α2,6-sialosides and C-6 sulfation of galactose (Gal6S) are mutually exclusive and cannot occur on the same LacNAc moiety. As a result, the pattern of sulfation on galactosides can be controlled by installing α1,3-fucosides or α2,6-sialosides to temporarily block certain LacNAc moieties from sulfation by keratan sulfate galactose 6-sulfotransferase (CHST1). The patterns of α1,3-fucosylation and α2,6-sialylation can be controlled by exploiting the mutual exclusivity of these modifications, which in turn controls the sites of sulfation by CHST1. Late-stage treatment with a fucosidase or sialidase to remove blocking fucosides or sialosides provides selectively sulfated KS oligosaccharides. These treatments also unmasked specific galactosides for further modification by CHST1. To showcase the potential of the enzymatic strategy, we have prepared a range of poly-LacNAc derivatives having different patterns of fucosylation and sulfation and several -glycans decorated by specific arrangements of sulfates.
硫酸角质素(KS)是一种广泛存在于各种组织类型细胞外基质中的蛋白聚糖,具有多种生物学功能。KS 是了解最少的蛋白聚糖之一,部分原因是缺乏经过良好定义的 KS 寡糖,这些寡糖对于结构结合研究、作为分析标准、研究角蛋白酶的底物特异性以及药物开发都是必需的。在这里,我们报告了一种仿生方法,该方法可通过使用特定的酶模块,以区域选择性的方式在寡乙酰乳糖胺(LacNAc)链上安装硫酸盐和岩藻糖基,从而提供 KS 的任何结构单元。该方法基于以下观察结果:α1,3-岩藻糖基、α2,6-唾液酸基和半乳糖 C-6 硫酸化(Gal6S)是相互排斥的,不能存在于同一个 LacNAc 部分上。因此,半乳糖基上的硫酸化模式可以通过安装α1,3-岩藻糖基或α2,6-唾液酸基来控制,这些修饰暂时阻止了角蛋白聚糖半乳糖 6-硫酸转移酶(CHST1)对某些 LacNAc 部分的硫酸化。α1,3-岩藻糖基化和α2,6-唾液酸化的模式可以通过利用这些修饰的相互排斥性来控制,这反过来又控制了 CHST1 的硫酸化位点。用岩藻糖苷酶或唾液酸酶进行晚期处理以去除封闭的岩藻糖基或唾液酸基,可以提供选择性硫酸化的 KS 寡糖。这些处理还揭示了 CHST1 进一步修饰的特定半乳糖基。为了展示酶策略的潜力,我们制备了一系列具有不同岩藻糖基化和硫酸化模式的多 LacNAc 衍生物以及几种通过特定排列的硫酸盐修饰的聚糖。