定性描述中值活性因子以估计农业工人的土壤接触量。

A qualitative characterization of meso-activity factors to estimate soil exposure for agricultural workers.

机构信息

Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

出版信息

J Expo Sci Environ Epidemiol. 2023 Jan;33(1):140-154. doi: 10.1038/s41370-022-00484-z. Epub 2022 Oct 17.

Abstract

BACKGROUND

Agricultural workers' exposure to soil contaminants is not well characterized. Activity pattern data are a useful exposure assessment tool to estimate extent of soil contact, though existing data do not sufficiently capture the range and magnitude of soil contact in the agricultural context.

OBJECTIVE

We introduce meso-activity, or specific tasks, to improve traditional activity pattern methodology. We propose a conceptual framework to organize the factors that may modify soil exposure and impact soil contact estimates within each meso-activity in agriculture. We build upon models from the US EPA to demonstrate an application of this framework to dose estimation.

METHODS

We conducted in-depth interviews with sixteen fruit and vegetable growers in Maryland to characterize factors that influence soil exposure in agriculture. For illustrative purposes, we demonstrate the application of the framework to translate our qualitative data into quantitative estimates of soil contact using US EPA models for ingestion and dermal exposure.

RESULTS

Growers discussed six tasks, or meso-activities, involving interaction with soil and described ten factors that may impact the frequency, duration and intensity of soil contact. We organized these factors into four categories (i.e., Environmental, Activity, Timing and Receptor; EAT-R) and developed a framework to improve agricultural exposure estimation and guide future research. Using information from the interviews, we estimated average daily doses for several agricultural exposure scenarios. We demonstrated how the integration of EAT-R qualitative factors into quantitative tools for exposure assessment produce more rigorous estimates of exposure that better capture the true variability in agricultural work.

SIGNIFICANCE

Our study demonstrates how a meso-activity-centered framework can be used to refine estimates of exposure for agricultural workers. This framework will support the improvement of indirect exposure assessment tools (e.g., surveys and questionnaires) and inform more comprehensive and appropriate direct observation approaches to derive quantitative estimations of soil exposure.

IMPACT STATEMENT

We propose a novel classification of activity pattern data that links macro and micro-activities through the quantification and characterization of meso-activities and demonstrate how the application of our qualitative framework improves soil exposure estimation for agricultural workers. These methodological advances may inform a more rigorous approach to the evaluation of pesticide and other chemical and biological exposures incurred by persons engaged in the cultivation of agricultural commodities in soil.

摘要

背景

农业工人接触土壤污染物的情况尚未得到充分描述。活动模式数据是一种有用的暴露评估工具,可用于估计土壤接触的程度,尽管现有数据并未充分捕捉农业环境中土壤接触的范围和程度。

目的

我们引入中观活动(meso-activity)或特定任务,以改进传统的活动模式方法。我们提出了一个概念框架,以组织可能改变土壤暴露并影响农业中每个中观活动土壤接触估计的因素。我们借鉴美国环保署(EPA)的模型,展示了该框架在剂量估算中的应用。

方法

我们对马里兰州的 16 名水果和蔬菜种植者进行了深入访谈,以描述影响农业土壤暴露的因素。为了说明问题,我们展示了如何使用美国环保署模型将我们的定性数据转化为土壤接触的定量估计,这些模型用于摄入和皮肤接触暴露。

结果

种植者讨论了涉及与土壤相互作用的六个任务(即中观活动),并描述了可能影响土壤接触频率、持续时间和强度的十个因素。我们将这些因素组织成四个类别(即环境、活动、时间和受体;EAT-R),并开发了一个框架来改进农业暴露评估并指导未来的研究。利用访谈信息,我们估算了几种农业暴露情景的平均日剂量。我们展示了如何将 EAT-R 定性因素整合到定量暴露评估工具中,从而产生更严格的暴露估计,更好地捕捉农业工作中的真实变异性。

意义

我们的研究表明,中观活动为中心的框架如何用于细化农业工人的暴露估计。该框架将支持改进间接暴露评估工具(例如,调查和问卷),并为更全面和适当的直接观察方法提供信息,以得出土壤暴露的定量估计。

影响陈述

我们提出了一种新的活动模式数据分类方法,通过中观活动的量化和描述将宏观和微观活动联系起来,并展示了我们定性框架的应用如何改进农业工人的土壤暴露估计。这些方法上的改进可能为评估从事土壤中农业商品种植的人员所接触的农药和其他化学和生物暴露提供更严格的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63ea/9849121/6c1b06d41066/41370_2022_484_Fig1_HTML.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索