Suppr超能文献

CD4 和 FOXP3 作为 T3/T4a 期 II 结直肠癌复发的预测标志物:应用一种新的离散贝叶斯决策规则。

CD4 and FOXP3 as predictive markers for the recurrence of T3/T4a stage II colorectal cancer: applying a novel discrete Bayes decision rule.

机构信息

Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan.

Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.

出版信息

BMC Cancer. 2022 Oct 18;22(1):1071. doi: 10.1186/s12885-022-10181-7.

Abstract

BACKGROUND

We recently reported the relapse-free survival (RFS) significance of the combination of CD4 and forkhead box P3 (FOXP3) T-cell densities identified by immunohistochemistry in patients with stage I, II, and III colorectal cancer (CRC) who underwent curative resections. This study was designed to determine the optimal combination of markers that predict recurrence in patients with T factors of T3/T4a stage II CRC by applying a novel Bayes decision rule.

METHODS

Using 137 cancer tissue specimens from T3/T4a stage II patients, 12 clinicopathologic and immune factors were analysed as predictive candidates for recurrence.

RESULTS

Our study showed that the combination of low CD4 and low FOXP3 T-cell densities resulted in extremely poor RFS.

CONCLUSIONS

Adjuvant chemotherapy may be considered for patients with a combination of low CD4 and low FOXP3 T-cell densities. The discovery of this new prognostic indicator is important for the appropriate management of patients undergoing curative resection for T3/T4a stage II CRC.

摘要

背景

我们最近报道了通过免疫组织化学鉴定的 CD4 和叉头框 P3(FOXP3)T 细胞密度在接受根治性切除术的 I 期、II 期和 III 期结直肠癌(CRC)患者中的无复发生存(RFS)意义。本研究旨在通过应用新的贝叶斯决策规则确定 T 因素为 T3/T4a 期 II 期 CRC 患者的复发预测标志物的最佳组合。

方法

使用来自 T3/T4a 期 II 期患者的 137 个癌症组织标本,分析了 12 个临床病理和免疫因素作为复发的预测候选因素。

结果

我们的研究表明,低 CD4 和低 FOXP3 T 细胞密度的组合导致极差的 RFS。

结论

对于低 CD4 和低 FOXP3 T 细胞密度组合的患者,可能需要考虑辅助化疗。这一新的预后指标的发现对于 T3/T4a 期 II 期 CRC 患者接受根治性切除术的适当管理非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验