Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
Naunyn Schmiedebergs Arch Pharmacol. 2023 Jan;396(1):121-137. doi: 10.1007/s00210-022-02303-6. Epub 2022 Oct 18.
Biocompatibility of nanoparticles is the most essential factor in their use in clinical applications. In this study, hyperbranched spermine (HS), hyperbranched spermine-polyethylene glycol-folic acid (HSPF), and hyperbranched spermine-polyethylene glycol-glucose (HSPG) were synthesized for DNA protection and gene delivery to breast cancer cells. The synthesis of HSPG and HSPF was confirmed using proton nuclear magnetic resonance (H-NMR), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) spectroscopy. The HS/DNA, HSPF/DNA, HSPG/DNA, and hyperbranched spermine-polyethylene glycol-folic acid/glucose/DNA (HSPFG/DNA) nanoparticles were prepared by combining different concentrations of HS, HSPF, and HSPG with the same amount of DNA. The ability of HS, HSPF, and HSPG to interact with DNA and protect it against plasm digestion was evaluated using agarose gel. Moreover, in vivo and in vitro biocompatibility of HSPF/DNA, HSPG/DNA, and HSPFG/DNA was investigated using MTT assay and calculating weight change and survival ratio of BALB/c mice, respectively. The results of agarose gel electrophoresis showed that HS, HSPF, and HSPG have the high ability to neutralize the negative charge of DNA and protect it against plasma degradation. The results of in vivo cytotoxicity assay revealed that the HSPF/DNA, HSPG/DNA, and HSPFG/DNA nanoparticles have good biocompatibility on female BALB/c mice. In vitro and in vivo transfection assays revealed that functionalization of the surface of HS using polyethylene glycol-folic acid (HSPF) and polyethylene glycol-glucose (HSPG) significantly increases gene delivery efficiency in vitro and in vivo. These results also showed that gene transfer using both HSPF and HSPG copolymers increases gene transfer efficiency compared to when only one of them is used. The HSPFG/DNA nanoparticles have a high potential for use in therapeutic applications because of their excellent biocompatibility and high gene transfer efficiency to breast cancer tissue.
纳米粒子的生物相容性是其在临床应用中的最重要因素。在这项研究中,合成了超支化 spermine(HS)、超支化 spermine-聚乙二醇-叶酸(HSPF)和超支化 spermine-聚乙二醇-葡萄糖(HSPG),用于保护 DNA 并将其递送到乳腺癌细胞中。使用质子核磁共振(H-NMR)、傅里叶变换红外光谱(FTIR)和热重分析(TGA)光谱证实了 HSPG 和 HSPF 的合成。通过将不同浓度的 HS、HSPF 和 HSPG 与相同量的 DNA 结合,制备了 HS/DNA、HSPF/DNA、HSPG/DNA 和超支化 spermine-聚乙二醇-叶酸/葡萄糖/DNA(HSPFG/DNA)纳米粒子。通过琼脂糖凝胶评估了 HS、HSPF 和 HSPG 与 DNA 相互作用并保护其免受质粒消化的能力。此外,通过 MTT 测定法和计算 BALB/c 小鼠的体重变化和存活率,分别研究了 HSPF/DNA、HSPG/DNA 和 HSPFG/DNA 的体内和体外生物相容性。琼脂糖凝胶电泳结果表明,HS、HSPF 和 HSPG 具有中和 DNA 负电荷并保护其免受血浆降解的高能力。体内细胞毒性测定结果表明,HSPF/DNA、HSPG/DNA 和 HSPFG/DNA 纳米粒子对雌性 BALB/c 小鼠具有良好的生物相容性。体外和体内转染实验表明,使用聚乙二醇-叶酸(HSPF)和聚乙二醇-葡萄糖(HSPG)对 HS 表面进行功能化显著提高了体外和体内的基因传递效率。这些结果还表明,与仅使用其中一种共聚物相比,使用 HSPF 和 HSPG 共聚物进行基因转移可以提高基因转移效率。由于其优异的生物相容性和对乳腺癌组织的高基因转移效率,HSPFG/DNA 纳米粒子具有很高的治疗应用潜力。