Nguyen C, Bréelle E, Barsuglia M, Capocasa E, De Laurentis M, Sequino V, Sorrentino F
Appl Opt. 2022 Jun 10;61(17):5226-5236. doi: 10.1364/AO.459190.
Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein-Podolsky-Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at and the idler field at +, must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry-Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.
未来的引力波探测器将使用频率相关的压缩真空态来实现量子噪声的宽带降低。量子噪声是这些探测器灵敏度的主要限制因素之一。先进的LIGO+、先进的处女座+和KAGRA计划通过将频率无关的压缩光态与滤波腔耦合来产生频率相关的压缩态。正在考虑一种基于量子纠缠条件压缩的替代技术:爱因斯坦-波多尔斯基-罗森(EPR)压缩。在EPR方案中,两个真空纠缠态,即频率为的信号场和频率为+的闲频场,必须通过光学谐振器在空间上分离,并发送到两个独立的零差探测器。在此框架下,我们设计并测试了一种固体法布里-珀罗标准具,用于EPR桌面实验原型,无需使用控制探测光束即可进行热控制。该装置还可用于无法使用强光束控制光学谐振器的光学实验,或更倾向于使用更简单光学装置的情况。