Ren Bin, Tang Shuai, Feng Yuxin, Cui Ying, Liu Jinlai, Song Jie, Jiang Yongyuan
Appl Opt. 2022 Sep 10;61(26):7558-7564. doi: 10.1364/AO.470274.
A reconfigurable anisotropic coding metasurface composed of a graphene layer and anisotropic Jerusalem-cross metallic layer is proposed for dynamic and complete multi-channel terahertz wavefront manipulation. By controlling the Fermi energy of graphene, continuous amplitude modulation is realized for the coding elements with certain phase responses. By arranging anisotropic phase coding elements with a specific coding sequence and changing the Fermi energy of graphene, the proposed metasurface can dynamically control multi-channel reflection beams with designed power distribution and simultaneously manipulate the scattering pattern from diffusion to mirror scattering under - and -polarized incidence, respectively. Compared with the dynamic phase modulation metasurface, such a tunable metasurface uses three degrees of freedom, including the polarization, phase, and amplitude responses to fully control the reflected wavefronts, which may have promising applications in tunable terahertz multi-functional holograms and multi-channel information communication.
提出了一种由石墨烯层和各向异性耶路撒冷十字形金属层组成的可重构各向异性编码超表面,用于动态和完整的多通道太赫兹波前操纵。通过控制石墨烯的费米能量,实现了对具有特定相位响应的编码元件的连续幅度调制。通过以特定编码序列排列各向异性相位编码元件并改变石墨烯的费米能量,所提出的超表面可以动态控制具有设计功率分布的多通道反射光束,并分别在垂直极化和水平极化入射下同时将散射模式从漫散射操纵为镜面散射。与动态相位调制超表面相比,这种可调谐超表面使用包括极化、相位和幅度响应在内的三个自由度来完全控制反射波前,这在可调谐太赫兹多功能全息图和多通道信息通信中可能具有广阔的应用前景。